Evaluation Study for Celiac Disease Diagnosing by using Deep Learning Techniques
DOI:
https://doi.org/10.31185/wjcms.373Keywords:
Artificial Intelligence, Deep Learning, Computer-Aided Diagnosis (CAD), Celiac DiseaseAbstract
Celiac disease (CD) is the autoimmune reaction that occurs as a result of ingestion of gluten, which results to mucosal injury. Proper screening is especially important here, though the existing diagnostic techniques are frequently expensive, as well as the time-consuming. This review seeks to uncover the future of deep learning techniques in changing the diagnosis of CD through imagery of biopsies. we explore Single Layer ABC-DL architectures, CNN in CD diagnosis, Transfer Learning and Multiple Instance Learning (MIL). In this review, these methods are described with regard to their current capabilities to improve diagnostic accuracy and speed over conventional approaches compared to those used in the construction of the models. Additionally, we describe the prospects and flaws seen in applying DL to medical image analysis and the critical issues of increased requirements for big labeled datasets, data quality, and the interpretability of the model. Last but not least, we discuss the possible future research avenues of the DL applications for CD diagnosis like multi-modal approach and better interpretability mechanisms. This review enable the author to identify the current status of developing deep learning techniques for CD diagnosis and further research direction in this promising field.
Downloads
References
1.Yu XB, Uhde M, Green PH, Alaedini A. Autoantibodies in the Extraintestinal Manifestations of Celiac Disease. Nutrients. 2018 Aug 20;10(8) [PMC free article] [PubMed] DOI: https://doi.org/10.3390/nu10081123
2.Clark R, Johnson R. Malabsorption Syndromes. Nurs Clin North Am. 2018 Sep;53(3):361-374. [PubMed] DOI: https://doi.org/10.1016/j.cnur.2018.05.001
3.Sharma P, Baloda V, Gahlot GP, Singh A, Mehta R, Vishnubathla S, Kapoor K, Ahuja V, Gupta SD, Makharia GK, Das P. Clinical, endoscopic, and histological differentiation between celiac disease and tropical sprue: A systematic review. J Gastroenterol Hepatol. 2019 Jan;34(1):74-83. [PubMed] DOI: https://doi.org/10.1111/jgh.14403
4.Volta U, Caio G, Stanghellini V, et al. Non-celiac gluten sensitivity: questions still to be answered despite increased awarness. Cell Mol Immunol 2013;10:383-92. https://doi.org/10.1038/cmi.2013.28 10.1038/cmi.2013.28 [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/cmi.2013.28
5.Caio G, Volta U, Sapone A, et al. Celiac disease: a comprehensive current review. BMC Medicine 2019;17:142-62. https://doi.org/10.1186/s12916-019-1380-z 10.1186/s12916-019-1380-z [DOI] [PMC free article] [PubMed] [Google Scholar]
6.Ludvigsson JF, Rubio-Tapia A, van Dyke CT, et al. Increasing incidence of celiac disease in a North American population. Am J Gastroenterol 2013:108:818-24. https://doi.org/10.1038/ajg.2013.60 10.1038/ajg.2013.60 [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/ajg.2013.60
7.Mustalahti K, Catassi C, Reunanen A, et al. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 2010;42:587-95. https://doi.org/10.3109/07853890.2010.505931 10.3109/07853890.2010.505931 [DOI] [PubMed] [Google Scholar] DOI: https://doi.org/10.3109/07853890.2010.505931
8.Sanders DS, Patel D, Stephenson TJ, et al. A primary care cross-sectional study of undiagnosed adult coeliac disease. Eur J Gastroenterol Hepatol 2003;15:407-13. https://doi.org/10.1097/00042737-200304000-00012 10.1097/00042737-200304000-00012 [DOI] [PubMed] [Google Scholar] DOI: https://doi.org/10.1097/00042737-200304000-00012
9.Sanders DS, Hurlstone DP, Stokes RO, et al. Changing face of adult coeliac disease: experience of a single university hospital in South Yorkshire. Postgrad Med J 2002;78:31-3. https://doi.org/10.1136/pmj.78.915.31 10.1136/pmj.78.915.31 [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1136/pmj.78.915.31
10.West J, Fleming KM, Tata LJ, et al. Incidence and prevalence of celiac disease and dermatitis herpetiformis in the UK over two decades: population-based study. Am J Gastroenterol 2014;109:757-68. https://doi.org/10.1038/ajg.2014.55 10.1038/ajg.2014.55 [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/ajg.2014.55
11.Lo W, Sano K, Lebwohl B, et al. Changing presentation of adult celiac disease. Dig Dis Sci. 2003, 48:395-8. https://doi.org/10.1023/a:1021956200382 10.1023/a:1021956200382 [DOI] [PubMed] [Google Scholar]
12.Fasano A. Celiac disease: how to handle a clinical chamaleon. N Eng J Med 2003; 348:2568-70. https://doi.org/10.1056/NEJMe030050 10.1056/NEJMe030050 [DOI] [PubMed] [Google Scholar] DOI: https://doi.org/10.1056/NEJMe030050
13.Ludviggson JF, Leffler DA, Bai JC, et al. The Oslo Classification for coeliac disease and related terms. Gut 2013;6:43-52. https://doi.org/10.1136/gutjnl-2011-301346 10.1136/gutjnl-2011-301346 [DOI] [PMC free article] [PubMed] [Google Scholar]
14.Caio G, Volta U, Sapone A, et al. Celiac disease: a comprehensive current review. BMC Medicine 2019;17:142-62. https://doi.org/10.1186/s12916-019-1380-z 10.1186/s12916-019-1380-z [DOI] [PMC free article] [PubMed] [Google Scholar]
15.Ciacci C, Ciclitira P, Hadjivassiliou M, et al. The gluten-free diet and its current application in coeliac disease and dermatitis herpetiformis. United European Gastroenterol J. 2015;3:121-35. https://doi.org/10.1177/2050640614559263 10.1177/2050640614559263 [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1177/2050640614559263
16.Pinto-Sanchez M.I., Silvester J.A., Lebwohl B., Leffler D.A., Anderson R.P., Therrien A., Kelly C.P., Verdu E.F. Society for the Study of Celiac Disease position statement on gaps and opportunities in coeliac disease. Nat. Rev. Gastroenterol. Hepatol. 2021;18:875–884. doi: 10.1038/s41575-021-00511-8. [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/s41575-021-00511-8
17.Makharia, G.K.; Singh, P.; Catassi, C.; Sanders, D.S.; Leffler, D.; Ali, R.A.R.; Bai, J.C. The global burden of coeliac disease: Opportunities and challenges. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 313–327. [Google Scholar] [CrossRef] [PubMed] DOI: https://doi.org/10.1038/s41575-021-00552-z
18.Catassi C., Fasano A. Celiac disease diagnosis: Simple rules are better than complicated algorithms. Am. J. Med. 2010;123:691–693. doi: 10.1016/j.amjmed.2010.02.019. [DOI] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.amjmed.2010.02.019
19.Raiteri A., Granito A., Giamperoli A., Catenaro T., Negrini G., Tovoli F. Current guidelines for the management of celiac disease: A systematic review with comparative analysis. World J. Gastroenterol. 2022;28:154–176. doi: 10.3748/wjg.v28.i1.154. [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.3748/wjg.v28.i1.154
20.Ciacci C., Bai J.C., Holmes G., Al-Toma A., Biagi F., Carroccio A., Ciccocioppo R., Di Sabatino A., Gingold-Belfer R., Jinga M., et al. Serum anti-tissue transglutaminase IgA and prediction of duodenal villous atrophy in adults with suspected coeliac disease without IgA deficiency (Bi.A.CeD): A multicentre, prospective cohort study. Lancet Gastroenterol. Hepatol. 2023;8:1005–1014. doi: 10.1016/S2468-1253(23)00205-4. [DOI] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/S2468-1253(23)00205-4
21.Ludvigsson J.F., Bai J.C., Biagi F., Card T.R., Ciacci C., Ciclitira P.J., Green P.H.R., Hadjivassiliou M., Holdoway A., van Heel D.A., et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut. 2014;63:1210–1228. doi: 10.1136/gutjnl-2013-306578. [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1136/gutjnl-2013-306578
22.Owais M., Arsalan M., Choi J., Mahmood T., Park K.R. Artificial Intelligence-Based Classification of Multiple Gastrointestinal Diseases Using Endoscopy Videos for Clinical Diagnosis. J. Clin. Med. 2019;8:986. doi: 10.3390/jcm8070986. [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.3390/jcm8070986
23.Leśniewska M., Patryn R., Kopystecka A., Kozioł I., Budzyńska J. Third Eye? The Assistance of Artificial Intelligence (AI) in the Endoscopy of Gastrointestinal Neoplasms. J. Clin. Med. 2023;12:6721. doi: 10.3390/jcm12216721. [DOI] [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.3390/jcm12216721
24.Sadoughi F., Ghaderzadeh M. A hybrid particle swarm and neural network approach for detection of prostate cancer from benign hyperplasia of prostate. Stud. Health Technol. Inform. 2014;205:481–485. [PubMed] [Google Scholar] DOI: https://doi.org/10.3233/978-1-61499-432-9-481
25.Ghaderzadeh M. Clinical decision support system for early detection of prostate cancer from benign hyperplasia of prostate. Stud. Health Technol. Inform. 2013;192:928. [PubMed] [Google Scholar]
26.Pang, S.; Du, A.; Orgun, M.A.; Yu, Z. A novel fused convolutional neural network for biomedical image classification. Med. Biol. Eng. Comput. 2019, 57, 107–121. [Google Scholar] [CrossRef] DOI: https://doi.org/10.1007/s11517-018-1819-y
27.Tolić, I. H., Habijan, M., Galić, I., & Nyarko, E. K. (2024). Advancements in computer-aided diagnosis of celiac disease: A systematic review. Biomimetics, 9(8), 493 DOI: https://doi.org/10.3390/biomimetics9080493
28. Carreras, J. "Celiac Disease Image Classification Using Convolutional Neural Network." Preprint, 2024. DOI: https://doi.org/10.20944/preprints202407.0329.v1
29. Koh, J. E. W., De Michele, S., Sudarshan, V. K., et al. "Automated Interpretation of Biopsy Images for the Detection of Celiac Disease Using a Machine Learning Approach." *Journal of Pathology Informatics*, vol. 11, 2021. DOI: https://doi.org/10.1016/j.cmpb.2021.106010
30.Wei, L., Chen, H., Lin, Y., & Jin, Q. (2019). Automatic diagnosis of celiac disease from biopsy images using deep learning. arXiv preprint arXiv:1901.11447. https://arxiv.org/abs/1901.11447
31.Kowsari, K., Jafari, M., & Brown, D. (2019). Deep learning for classification of celiac disease from duodenal biopsies. arXiv preprint arXiv:1904.05773. https://arxiv.org/abs/1904.05773
32. Miao, Y. "Patch-based Histopathological Image Classifier for the Diagnosis of Celiac Disease Using Convolutional Neural Networks." *Master’s Thesis, McGill University, School of Computer Science*, 2022. [Available at: https://escholarship.mcgill.ca/concern/theses/b8515t23p](https://escholarship.mcgill.ca/concern/theses/b8515t23p).
33. Denholm, J., Schreiber, B. A., and Evans, S. C., et al. "Multiple-instance-learning-based Detection of Coeliac Disease in Histological Whole-slide Images." *J Pathol Inform*, vol. 13, 2022. DOI: https://doi.org/10.1016/j.jpi.2022.100151
34. Rossi, A., Bianchi, M., and Ferrara, L. "Precision Medicine and Machine Learning for Predicting Potential Celiac Disease Outcomes." Scientific Reports, 2021.
35.Sali, R., Martin, C. R., & Murray, J. A. (2023). Deep learning in the diagnosis of celiac disease: A systematic review. Journal of Clinical Medicine, 12(23), 7386. https://www.mdpi.com/2077-0383/12/23/7386 DOI: https://doi.org/10.3390/jcm12237386
36. Xu, Q., Li, Y., & Zhang, W. (2022). Multiple-instance-learning-based detection of celiac disease in histological whole-slide images. Research Paper, Machine Learning.
37. Green, P. H., Haug, M., & McDonald, J. (2021). Precision medicine and machine learning towards the prediction of the outcome of potential celiac disease. Research Paper, Machine Learning.
38.Molder, A.; Balaban, D.V.; Molder, C.-C.; Jinga, M.; Robin, A. Computer-Based Diagnosis of Celiac Disease by Quantitative Processing of Duodenal Endoscopy Images. Diagnostics 2023, 13, 2780. DOI: https://doi.org/10.3390/diagnostics13172780
39. Bilgiç, E.K.; Gökbay, İ.Z.; Kayar, Y. Innovative Approaches to Clinical Diagnosis: Transfer Learning in Facial Image Classification for Celiac Disease Identification. Appl. Sci. 2024, 14, 6207. https://doi.org/10.3390/app14146207 DOI: https://doi.org/10.3390/app14146207
40. Stoleru, C.-A., Dulf, E. H., & Ciobanu, L. (2022). Automated detection of celiac disease using Machine Learning Algorithms. [2022] 12:4071. DOI: https://doi.org/10.1038/s41598-022-07199-z
41. Shi, T., Li, J., Li, N., Chen, C., Chen, C., Chang, C., Xue, S., Liu, W., Reyim, A. M., Gao, F., & Lv, X. (2024). Rapid diagnosis of celiac disease based on plasma Raman spectroscopy combined with deep learning. [2024] 14:15056. DOI: https://doi.org/10.1038/s41598-024-64621-4
42. Khalili Dooraki, S., Mohsenzadeh Hedesh, M., Maharat Show, Z., et al. (2024). Early detection of celiac disease through its common symptoms using machine learning algorithms. Journal of Clinical Images and Medical Case Reports, DOI: https://doi.org/10.52768/2766-7820/2915
43. Syed, S., Ehsan, L., Shrivastava, A., Sengupta, S., Khan, M., Kowsari, K., Guleria, S., Sali, R., Kant, K., Kang, S.-J., Sadiq, K., Iqbal, N. T., Cheng, L., Moskaluk, C. A., Kelly, P., Amadi, B. C., Ali, S. A., Moore, S. R., & Brown, D. E. (2021). Artificial Intelligence-Based Analytics for Diagnosis of Small Bowel Enteropathies and Black Box Feature Detection. Journal of Pediatric Gastroenterology and Nutrition. DOI: https://doi.org/10.1101/2020.08.06.20159152
44. Faust, O., De Michele, S., Koh, J. E. W., Jahmunah, V., Lih, O. S., Kamath, A. P., Barua, P. D., Ciaccio, E. J., Lewis, S. K., Green, P. H., Bhagat, G., & Acharya, U. R. (2022). Automated analysis of small intestinal lamina propria to distinguish normal, celiac disease, and non-celiac duodenitis biopsy images. Computer Methods and Programs in Biomedicine, 107320. https://doi.org/10.1016/j.cmpb.2022.107320 DOI: https://doi.org/10.1016/j.cmpb.2022.107320
45. Scheppach, M. W., Rauber, D., Stallhofer, J., Muzalyova, A., Otten, V., Manzeneder, C., Schwamberger, T., Wanzl, J., Schlottmann, J., Tadic, V., Probst, A., Schnoy, E., Römmele, C., Fleischmann, C., Meinikheim, M., Miller, S., Märkl, B., Stallmach, A., Palm, C., Messmann, H., & Ebigbo, A. (2023). Detection of duodenal villous atrophy on endoscopic images using a deep learning algorithm. Gastrointestinal Endoscopy. https://doi.org/10.1016/j.gie.2023.01.006 DOI: https://doi.org/10.1016/j.gie.2023.01.006
46. Alharbi, E., Rajaram, A., Côté, K., Farag, M., Maleki, F., Gao, Z.-H., Maedler-Kron, C., Marcus, V., & Fiset, P. O. (2024). A Deep Learning–Based Approach to Estimate Paneth Cell Granule Area in Celiac Disease. DOI: https://doi.org/10.5858/arpa.2023-0074-OA
47. Koh JEW, Hagiwara Y, Oh SL, Tan JH, Ciaccio EJ, Green PH, Lewis SK, Acharya UR. Automated diagnosis of celiac disease using DWT and nonlinear features with video capsule endoscopy images.
48. Wang X, Qian H, Ciaccio EJ, Lewis SK, Bhagat G, Green PH, Xu S, Huang L, Gao R, Liu Y. Celiac disease diagnosis from videocapsule endoscopy images with residual learning and deep feature extraction
49. Ehsan L, Khan M, Sali R, Catalano AM, Adorno W III, Kowsari K, Cheng L, Pramoonjago P, Raghavan S, Silvester J, DeBoer M, Moskaluk CA, Moore SR, Brown DE, Syed S. Disease severity and associated endocrine morbidities through deep learning-based image analytics
50.Nisha, Chaudhary P. Classification of celiac disease using ensemble SMOTE-RF approach. Biomed Signal Process Control.
51. Srivastava, A., Sengupta, S., Kang, S.-J., Kant, K., Khan, M., Ali, S. A., Moore, S. R., Amadi, B. C., Kelly, P., Syed, S., & Brown, D. E. "Deep Learning for Detecting Diseases in Gastrointestinal Biopsy Images." University of Virginia, 2019. DOI: https://doi.org/10.1109/SIEDS.2019.8735619
52. Keskin Bilgiç, E., Zaim Gökbay, İ., & Kayar, Y. "Evaluating the Spectrum of AI: From Deep Learning to Traditional Models in Identifying Celiac Disease Marsh Levels." Electrica, 2024, 24(3), 748-754. DOI: https://doi.org/10.5152/electrica.2024.24068
53. Carreras, J. "Artificial Intelligence Analysis of Celiac Disease Using an Autoimmune Discovery Transcriptomic Panel Highlighted Pathogenic Genes including BTLA." Healthcare, 2022, 10(1550). DOI: https://doi.org/10.3390/healthcare10081550
54. Saken, M., Banzragch Yağcı, M., & Yumuşak, N. "Impact of Image Segmentation Techniques on Celiac Disease Classification Using Scale Invariant Texture Descriptors for Standard Flexible Endoscopic Systems." Turkish Journal of Electrical Engineering and Computer Sciences, 2021, 29(2), 301-315. DOI: https://doi.org/10.3906/elk-2002-171
55. Zhou T, Han G, Li BN, Lin Z, Ciaccio EJ, Greene PH, Qin J. Application of Computer Science and Biomedical Engineering in Health Research. [Affiliations: South China University of Technology, Hefei University of Technology, Sun Yat-sen University, Hong Kong Polytechnic University, Columbia University].
56. Shen T, Wang H, Hu R, Lv Y. Developing neural network diagnostic models and potential drugs based on novel identified immune-related biomarkers for celiac disease. Hum Genomics.
57. Syed S, Al-Boni M, Khan MN, Sadiq K, Iqbal NT, Moskaluk CA, Kelly P, Amadi B, Ali SA, Moore SR, Brown DE. Assessment of Machine Learning Detection of Environmental Enteropathy and Celiac Disease in Children. JAMA Netw Open. 2019 DOI: https://doi.org/10.1001/jamanetworkopen.2019.5822
58. Wimmer, G., Vécsei, A., & Uhl, A. (2016). CNN Transfer Learning for the Automated Diagnosis of Celiac Disease. University of Salzburg, Department of Computer Sciences, Salzburg, Austria; St. Anna Children’s Hospital, Department of Pediatrics, Medical University, Vienna, Austria. DOI: https://doi.org/10.1109/IPTA.2016.7821020
Downloads
Published
Issue
Section
License
Copyright (c) 2025 asra ali

This work is licensed under a Creative Commons Attribution 4.0 International License.