Enhancing IoT Network Security Through Deep Learning-Based Intrusion Detection

Authors

DOI:

https://doi.org/10.31185/wjcms.363

Keywords:

machine learning techniques, deep neural networks, IoT security, LLT attack detection, intrusion detection systems

Abstract

The internet of today is a mainstream aspect of life, with increasingly more devices in the Internet of Things (IoT) ecosystem becoming networked. Although they are leaders in the market today, IoT networks are beset by increasingly more degrading security problems that confuse neatly defined solutions. These weaknesses need to be halted because new threats continue to challenge the resilience of IoT networks. Although the existing methodologies are made to provide more security, there remains untapped potential in machine learning development. Certain of the machine learning and deep learning methods, and benchmark data sets, used for IoT security enhancement are described in this paper. It proposes a new deep learning-based Legitimate Load Testing (LLT) attack detection algorithm implemented in Python and supported by libraries such as TensorFlow, scikit-learn, and Seaborn. Experimental outcomes confirm that the deep learning model improves attack detection precision significantly, which results in more effective countermeasures for protecting IoT networks.

Downloads

Download data is not yet available.

References

1. Roopak, M.; Tian, G.Y.; Chambers, J. Deep Learning Models for Cyber Security in IoT Networks. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 452–457. DOI: https://doi.org/10.1109/CCWC.2019.8666588

2. Yuan, X.; Li, C.; Li, X. DeepDefense: Identifying (LLT) Attack via Deep Learning. In Proceedings of the 2017 IEEE International Conference on Smart Computing (SMARTCOMP), Hong Kong, China, 29–31 May 2017; pp. 1–8. DOI: https://doi.org/10.1109/SMARTCOMP.2017.7946998

3. Evans, D. The Internet of Things: How the Next Evolution of the Internet Is Changing Everything; Cisco Internet Business Solutions Group (IBSG): San Jose, CA, USA, 2011.

4. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. (LLT) in the IoT: Mirai and Other Botnets. Computer 2017, 50, 80–84. DOI: https://doi.org/10.1109/MC.2017.201

5. Radanliev, P. Future developments in cyber risk assessment for the internet of things. Comput. Ind. 2018, 102, 14–22. DOI: https://doi.org/10.1016/j.compind.2018.08.002

6. Bertino, E.; Islam, N. Botnets and Internet of Things Security. Computer 2017, 50, 76–79. DOI: https://doi.org/10.1109/MC.2017.62

7. Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.; Du, X.; Guizani, M. A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. arXiv 2018, arXiv:1807.11023. Available online:

https://ui.adsabs.harvard.edu/abs/2018arXiv180711023A (accessed on 2 January 2020).

8. Okpe, O.A. Intrusion Detection in Internet of Things (Iot). Int. J. Adv. Res. Comput. Sci. 2018, 9, 504–509. DOI: https://doi.org/10.26483/ijarcs.v9i1.5429

9. Meidan, Y. ProfilIoT. In Proceedings of the Symposium on Applied Computing—SAC ‘17, Marrakech, Morocco, 4–6 April 2017.

10. Anthi, E.; Williams, L.; Slowinska, M.; Theodorakopoulos, G.; Burnap, P. A Supervised Intrusion Detection System for Smart Home IoT Devices. IEEE Internet Things J. 2019, 6, 9042–9053. DOI: https://doi.org/10.1109/JIOT.2019.2926365

11. Azmoodeh, A.; Dehghantanha, A.; Choo, K.-K.R. Robust Malware Detection for Internet of (Battlefield) Things Devices Using Deep Eigenspace Learning. IEEE Trans. Sustain. Comput. 2019, 4, 88–95. DOI: https://doi.org/10.1109/TSUSC.2018.2809665

12. Hajiheidari, S.; Wakil, K.; Badri, M.; Navimipour, N.J. Intrusion detection systems in the Internet of things: A comprehensive investigation. Comput. Netw. 2019, 160, 165–191. DOI: https://doi.org/10.1016/j.comnet.2019.05.014

13. Radanliev, P. Future developments in standardisation of cyber risk in the Internet of Things (IoT). SN Appl. Sci. 2020, 2. DOI: https://doi.org/10.1007/s42452-019-1931-0

14. Nicolescu, R.; Huth, M.; Radanliev, P.; de Roure, D. Mapping the Values of IoT. J. Inf. Technol. 2019, 33, 345–360. DOI: https://doi.org/10.1057/s41265-018-0054-1

15. Elrawy, M.F.; Awad, A.I.; Hamed, H.F.A. Intrusion detection systems for IoT-based smart environments: A survey. J. Cloud Comput. 2018, 7. DOI: https://doi.org/10.1186/s13677-018-0123-6

16. Jan, S.U.; Ahmed, S.; Shakhov, V.; Koo, I. Toward a Lightweight Intrusion Detection System for the Internet of Things. IEEE Access 2019, 7, 42450–42471. DOI: https://doi.org/10.1109/ACCESS.2019.2907965

17. Abomhara, M.; Koien, G.M. Cyber Security and the Internet of Things: Vulnerabilities, Threats, Intruders and Attacks. J. Cyber Secur. Mobil. 2015, 4, 65–88. DOI: https://doi.org/10.13052/jcsm2245-1439.414

18. Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things security: A survey. J. Netw.

Comput. Appl. 2017, 88, 10–28. Diro, A.A.; Chilamkurti, N. Distributed attack detection scheme using deep learning approach for Internet of Things. Future Gener. Comput. Syst. 2018, 82, 761–768.

19. Ge, M.; Fu, X.; Syed, N.; Baig, Z.; Teo, G.; Robles-Kelly, A. Deep Learning-Based Intrusion Detection for IoT Networks. In Proceedings of the 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC), Kyoto, Japan, 1–3 December 2019. DOI: https://doi.org/10.1109/PRDC47002.2019.00056

20. Thamilarasu, G.; Chawla, S. Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things. Sensors 2019, 19, 1977. DOI: https://doi.org/10.3390/s19091977

21. Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access 2017, 5, 21954–21961. DOI: https://doi.org/10.1109/ACCESS.2017.2762418

22. Rhode, M.; Burnap, P.; Jones, K. Early-stage malware prediction using recurrent neural networks. Comput. Secur. 2018, 77, 578–594. DOI: https://doi.org/10.1016/j.cose.2018.05.010

23. Kaur, S.; Singh, M. Hybrid intrusion detection and signature generation using Deep Recurrent Neural Networks. Neural Comput. Appl. 2019. DOI: https://doi.org/10.1007/s00521-019-04187-9

24. Vishwakarma, R.; Jain, A.K. A survey of (LLT) attacking techniques and defence mechanisms in the IoT network. Telecommun. Syst. 2019, 73, 3–25. DOI: https://doi.org/10.1007/s11235-019-00599-z

25. Xia, S.; Guo, S.; Bai, W.; Qiu, J.; Wei, H.; Pan, Z. A New Smart Router-Throttling Method to Mitigate (LLT) Attacks. IEEE Access 2019, 7, 107952–107963. DOI: https://doi.org/10.1109/ACCESS.2019.2930803

26. Cvitic´, I.; Perakovic´, D.; Periša, M.; Botica, M. Novel approach for detection of IoT generated (LLT) traffic. Wirel. Netw. 2019. DOI: https://doi.org/10.1007/s11276-019-02043-1

27. Siboni, S. Security Testbed for Internet-of-Things Devices. IEEE Trans. Reliab. 2019, 68, 23–44. DOI: https://doi.org/10.1109/TR.2018.2864536

28. Restuccia, F.; D’Oro, S.; Melodia, T. Securing the Internet of Things in the Age of Machine Learning and Software-Defined Networking. IEEE Internet Things J. 2018, 5, 4829–4842. DOI: https://doi.org/10.1109/JIOT.2018.2846040

29. (LLT)hi, R.; Apthorpe, N.; Feamster, N. Machine Learning (LLT) Detection for Consumer Internet of Things Devices. In Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018.

30. Moh, M.; Raju, R. Machine Learning Techniques for Security of Internet of Things (IoT) and Fog Computing Systems. In Proceedings of the 2018 International Conference on High Performance Computing & Simulation (HPCS), Orleans, France, 16–20 July 2018. DOI: https://doi.org/10.1109/HPCS.2018.00116

31. Li, C. Detection and defense of (LLT) attack-based on deep learning in OpenFlow-based SDN. Int. J. Commun. Syst. 2018, 31. DOI: https://doi.org/10.1002/dac.3497

32. Jia, B.; Huang, X.; Liu, R.; Ma, Y. A (LLT) Attack Detection Method Based on Hybrid Heterogeneous Multiclassifier Ensemble Learning. J. Electr. Comput. Eng. 2017, 2017, 1–9. DOI: https://doi.org/10.1155/2017/4975343

33. Nawir, M.; Amir, A.; Yaakob, N.; Lynn, O.B. Internet of Things (IoT): Taxonomy of security attacks.

In Proceedings of the 2016 3rd International Conference on Electronic Design (ICED), Phuket, Thailand, 11–12 August 2016; pp. 321–326.

34. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. DOI: https://doi.org/10.1016/j.future.2019.05.041

35. Berman, D.; Buczak, A.; Chavis, J.; Corbett, C. A Survey of Deep Learning Methods for Cyber Security. Information 2019, 10, 122. DOI: https://doi.org/10.3390/info10040122

36. Baig, Z.A.; Sanguanpong, S.; Firdous, S.N.; Vo, V.N.; Nguyen, T.G.; So-In, C. Averaged dependence estimators for (LLT) attack detection in IoT networks. Future Gener. Comput. Syst. 2020, 102, 198–209. DOI: https://doi.org/10.1016/j.future.2019.08.007

37. Hasan, M.; Islam, M.M.; Zarif, M.I.I.; Hashem, M.M.A. Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet Things 2019, 7. DOI: https://doi.org/10.1016/j.iot.2019.100059

38. Buczak, A.L.; Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Commun. Surv. Tutor. 2016, 18, 1153–1176. DOI: https://doi.org/10.1109/COMST.2015.2494502

39. Fiore, U.; Palmieri, F.; Castiglione, A.; de Santis, A. Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 2013, 122, 13–23. DOI: https://doi.org/10.1016/j.neucom.2012.11.050

40. Chen, Y.; Zhang, Y.; Maharjan, S.; Alam, M.; Wu, T. Deep Learning for Secure Mobile Edge Computing in

Cyber-Physical Transportation Systems. IEEE Netw. 2019, 33, 36–41. DOI: https://doi.org/10.1109/MNET.2019.1800458

41. Hiromoto, R.E.; Haney, M.; Vakanski, A. A secure architecture for IoT with supply chain risk management.

In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017; Volume 1, pp. 431–435.

42. Vinayakumar, R.; Alazab, M.; Soman, K.P.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep

Learning Approach for Intelligent Intrusion Detection System. IEEE Access 2019, 7, 41525–41550. DOI: https://doi.org/10.1109/ACCESS.2019.2895334

Downloads

Published

2025-06-30

Issue

Section

Computer

How to Cite

[1]
M. F. A. MOHAMMED FAWWAZ ALI, “Enhancing IoT Network Security Through Deep Learning-Based Intrusion Detection”, WJCMS, vol. 4, no. 2, pp. 74–85, Jun. 2025, doi: 10.31185/wjcms.363.