Categorization of Celebrity Photos Based on Deep Machine Learning for Feature Extraction and Classification
DOI:
https://doi.org/10.31185/wjcms.341Abstract
In feature extraction, images or videos are analyzed to identify facial features before pinpointing the exact target. Significant progress has been made in the realm of feature extraction through deep learning. With deep learning technologies, developers have created algorithms for facial analysis and recognition that enhance accuracy and effectiveness. Consequently, programmers and developers have started to implement facial recognition technology in a wide range of applications to address these challenges. The identification process is particularly difficult due to the abundance of unstructured datasets. In real-world scenarios, identification continues to be quite challenging despite various methods proposed so far. This paper aims to analyze celebrity categorization based on deep features under different conditions. Most algorithms are influenced by these problematic factors, whether intentionally or unintentionally. Six datasets are utilized in this paper: the Open Famous People Dataset, Celeb Identification Dataset, Bollywood Celebrity Localized Dataset (170), Football Player's Dataset, Mini_LFW, and Nepali Celeb Localized Dataset. Most of these images feature celebrities including actors, singers, players, actresses, politicians, and social figures from diverse nationalities and countries. Therefore, this paper offers a combination of results from classification methods: Multilayer Perceptron Classifier (MLP), Decision Tree Classifier (DT), Bootstrap Aggregation Decision Tree Classifier (TreeBagger), Extreme Gradient Boosting Classifier (XGB), and Stochastic Gradient Descent Classification (SGD), alongside deep learning methods for feature extraction (VGGFace2 model pretraining and SENet-50 model architecture) across six different facial datasets. The results demonstrated that the highest accuracy (F-measure, Recall, and Precision) was achieved following the training and testing process in all datasets using the MLP and SGD classifiers.
Downloads
References
[1] A. Almadan, A. Krishnan, and A. Rattani, “BWCFace: Open-set Face Recognition using Body-worn Camera,” Proc. - 19th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2020, pp. 1036–1043, 2020, doi: 10.1109/ICMLA51294.2020.00168. DOI: https://doi.org/10.1109/ICMLA51294.2020.00168
[2] S. Hapani, N. Prabhu, N. Parakhiya, and M. Paghdal, “Automated Attendance System Using Image Processing,” Proc. - 2018 4th Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2018, pp. 1–4, 2018, doi: 10.1109/ICCUBEA.2018.8697824. DOI: https://doi.org/10.1109/ICCUBEA.2018.8697824
[3] U. Jayaraman, P. Gupta, S. Gupta, G. Arora, and K. Tiwari, “Recent development in face recognition,” Neurocomputing, vol. 408, pp. 231–245, 2020, doi: 10.1016/j.neucom.2019.08.110. DOI: https://doi.org/10.1016/j.neucom.2019.08.110
[4] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the Gap to human-level performance in face verification,” Proc. IEEE Conf. Comput. Vis. pattern Recognit., pp. 1701–1708, 2014, doi: 10.1109/CVPR.2014.220. DOI: https://doi.org/10.1109/CVPR.2014.220
[5] C. Boufenar, A. Kerboua, and M. Batouche, “Investigation on deep learning for off-line handwritten Arabic character recognition,” Cogn. Syst. Res., vol. 50, no. August, pp. 180–195, 2018, doi: 10.1063/5.0068646. DOI: https://doi.org/10.1016/j.cogsys.2017.11.002
[6] A. M. Abdalah and N. R. Alkazaz, “Predicting Movie Production Years through Facial Recognition of Actors with Machine Learning,” Baghdad Sci. J., vol. 21, pp. 4146–4162, 2024, doi: 10.21123/bsj.2024.8996. DOI: https://doi.org/10.21123/bsj.2024.8996
[7] T. Akter et al., “Improved transfer-learning-based facial recognition framework to detect autistic children at an early stage,” Brain Sci., vol. 11, no. 6, 2021, doi: 10.3390/brainsci11060734. DOI: https://doi.org/10.3390/brainsci11060734
[8] O. A. Aghdam, B. Bozorgtabar, H. K. Ekenel, and J. P. Thiran, “Exploring factors for improving low resolution face recognition,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol. 2019-June, pp. 2363–2370, 2019, doi: 10.1109/CVPRW.2019.00290. DOI: https://doi.org/10.1109/CVPRW.2019.00290
[9] V. Aswal, O. Tupe, S. Shaikh, and N. N. Charniya, “Single Camera Masked Face Identification,” Proc. - 19th IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2020, pp. 57–60, 2020, doi: 10.1109/ICMLA51294.2020.00018. DOI: https://doi.org/10.1109/ICMLA51294.2020.00018
[10] P. S. Prasad, R. Pathak, V. K. Gunjan, and H. V. Ramana Rao, “Deep Learning Based Representation for Face Recognition,” Lect. Notes Electr. Eng., vol. 570, no. January, pp. 419–424, 2020, doi: 10.1007/978-981-13-8715-9_50. DOI: https://doi.org/10.1007/978-981-13-8715-9_50
[11] M. Ali and D. Kumar, “A Combination between Deep learning for feature extraction and Machine Learning for Recognition,” 2021 12th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2021, pp. 1–4, 2021, doi: 10.1109/ICCCNT51525.2021.9579913. DOI: https://doi.org/10.1109/ICCCNT51525.2021.9579913
[12] M. Usgan, R. Ferdiana, and I. Ardiyanto, “Deep learning pre-trained model as feature extraction in facial recognition for identification of electronic identity cards by considering age progressing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1115, no. 1, p. 012009, 2021, doi: 10.1088/1757-899x/1115/1/012009. DOI: https://doi.org/10.1088/1757-899X/1115/1/012009
[13] E. Al Daoud and G. Samara, “Improving the Face Recognition Performance Using Gabor and VGGFace2 Features Concatenation,” 6th Int. Conf. Inf. Technol. InCIT 2022, pp. 187–190, 2022, doi: 10.1109/InCIT56086.2022.10067669. DOI: https://doi.org/10.1109/InCIT56086.2022.10067669
[14] A. M. Hemmatiyan-Larki, F. Rafiee-Karkevandi, and M. Yazdian-Dehkordi, “Facial Expression Recognition: A Comparison with Different Classical and Deep Learning Methods,” Iran. Conf. Mach. Vis. Image Process. MVIP, vol. 2022-Febru, pp. 1–4, 2022, doi: 10.1109/MVIP53647.2022.9738553. DOI: https://doi.org/10.1109/MVIP53647.2022.9738553
[15] M. C. Keshava, C. S. Prasanna, V. Kavitha, K. Mahima, V. Padmavathi, and P. Srinivasulu, “Missing Person Identification System Using Deep Learning Algorithm (CNN) and Machine Learning Classifiers,” Lect. Notes Electr. Eng., vol. 915, pp. 267–276, 2022, doi: 10.1007/978-981-19-2828-4_26. DOI: https://doi.org/10.1007/978-981-19-2828-4_26
[16] S. P. Adithama, M. Maslim, and R. Gunawan, “Implementation of Face Recognition for Patient Identification Using the Transfer Learning Method,” TEM J., vol. 12, no. 2, pp. 775–784, 2023, doi: 10.18421/TEM122-22. DOI: https://doi.org/10.18421/TEM122-22
[17] A. Singh, S. Bhatt, V. Nayak, and M. Shah, “Automation of surveillance systems using deep learning and facial recognition,” Int. J. Syst. Assur. Eng. Manag., vol. 14, no. s1, pp. 236–245, 2023, doi: 10.1007/s13198-022-01844-6. DOI: https://doi.org/10.1007/s13198-022-01844-6
[18] R. Butuner, I. Cinar, Y. S. Taspinar, R. Kursun, M. H. Calp, and M. Koklu, “Classification of deep image features of lentil varieties with machine learning techniques,” Eur. Food Res. Technol., vol. 249, no. 5, pp. 1303–1316, 2023, doi: 10.1007/s00217-023-04214-z. DOI: https://doi.org/10.1007/s00217-023-04214-z
[19] C. Y. Chang, A. S. Santra, I. H. Chang, S. J. Wu, D. S. Roy, and Q. Zhang, “Design and implementation of a real-time face recognition system based on artificial intelligence techniques,” Multimed. Syst., vol. 30, no. 2, pp. 1–9, 2024, doi: 10.1007/s00530-024-01306-y. DOI: https://doi.org/10.1007/s00530-024-01306-y
[20] P. Grd, I. Tomičić, and E. Barčić, “Transfer Learning with EfficientNetV2S for Automatic Face Shape Classification,” J. Univers. Comput. Sci., vol. 30, no. 2, pp. 153–178, 2024, doi: 10.3897/jucs.104490. DOI: https://doi.org/10.3897/jucs.104490
[21] Y. ROMERO and A. Rocha, “Open Famous People Faces,” Kaggle, 2022. https://www.kaggle.com/datasets/yveslr/open-famous-people-faces
[22] AMSHRA267, “Mini LFW dataset,” Kaggle, 2021. https://www.kaggle.com/datasets/amanmishra4yearbtech/cleaned-lfw?resource=download
[23] S. Roy, “Bollywood Celebrity Faces explore Localized Dataset ( 170 ),” 2023. https://www.kaggle.com/datasets/sroy93/bollywood-celeb-localized-face-dataset-extended
[24] A. BALI, Mohamed Aleya, and A. Riahi, “Football players faces dataset,” 2021. https://www.kaggle.com/datasets/azizbali/football-players-faces-dataset
[25] S. Satpute, “Celeb Facial Recognition,” 2022. https://www.kaggle.com/datasets/soujanyasatpute/celeb-facial-recognition
[26] Amitpant7, “Nepali Celeb Localized Face Dataset,” 2023. https://www.kaggle.com/datasets/soujanyasatpute/celeb-facial-recognition
[27] M. O. Oloyede, G. P. Hancke, and H. C. Myburgh, “A review on face recognition systems: recent approaches and challenges,” Multimed. Tools Appl., vol. 79, no. 37–38, pp. 27891–27922, 2020, doi: 10.1007/s11042-020-09261-2. DOI: https://doi.org/10.1007/s11042-020-09261-2
[28] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition,” in British Machine Vision Association, 2015, pp. 1–12. doi: 10.1201/9781003091356-4. DOI: https://doi.org/10.5244/C.29.41
[29] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “VGGFace2: A dataset for recognising faces across pose and age,” Proc. - 13th IEEE Int. Conf. Autom. Face Gesture Recognition, FG 2018, pp. 67–74, 2018, doi: 10.1109/FG.2018.00020. DOI: https://doi.org/10.1109/FG.2018.00020
[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. doi: 10.14456/mijet.2021.8. DOI: https://doi.org/10.1109/CVPR.2016.90
[31] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation_Networks,” in IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141. [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html DOI: https://doi.org/10.1109/CVPR.2018.00745
[32] G. Al-Naymat, M. Al-Kasassbeh, N. Abu-Samhadanh, and S. Sakr, “Classification of VoIP and non-VoIP traffic using machine learning approaches,” J. Theor. Appl. Inf. Technol., vol. 92, no. 2, pp. 403–414, 2016.
[33] R. C. Damale and B. V. Pathak, “Face Recognition Based Attendance System Using Machine Learning Algorithms,” in Proceedings of the Second International Conference on Intelligent Computing and Control Systems (ICICCS 2018), 2018, no. Iciccs, pp. 414–419. DOI: https://doi.org/10.1109/ICCONS.2018.8662938
[34] M. Loey, G. Manogaran, M. Hamed, and N. Taha, “A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic,” Measurement, vol. 167, pp. 1–8, 2021. DOI: https://doi.org/10.1016/j.measurement.2020.108288
[35] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 785–794, 2016, doi: 10.1145/2939672.2939785. DOI: https://doi.org/10.1145/2939672.2939785
[36] Monika, M. Kumar, and M. Kumar, “XGBoost: 2D-object recognition using shape descriptors and extreme gradient boosting classifier,” Adv. Intell. Syst. Comput., vol. 1227, pp. 207–222, 2021, doi: 10.1007/978-981-15-6876-3_16. DOI: https://doi.org/10.1007/978-981-15-6876-3_16
[37] M. Ayoub, M. S. Khokha, J. Zakria, and W. Rasheed, “Efficient Face Re-Identification through PSO Based Adaptive Deep Learning Models,” J. Indep. Stud. Res. Comput., vol. 19, no. 2, pp. 18–35, 2021, doi: 10.31645/jisrc.37.19.2.4. DOI: https://doi.org/10.31645/JISRC.37.19.2.4
[38] R. Sukmawati and M. I. Tarmizi, “A Method for Identification of Face of the Person and Presence of Facial Spot in the Face,” Int. J. Res. Appl. Sci. Biotechnol., vol. 7, no. 5, pp. 42–49, 2020, doi: 10.20944/preprints202008.0330.v1. DOI: https://doi.org/10.31033/ijrasb.7.5.4
[39] N. S. Mullah and W. M. N. W. Zainon, “Advances in Machine Learning Algorithms for Hate Speech Detection in Social Media: A Review,” IEEE Access, vol. 9, pp. 88364–88376, 2021, doi: 10.1109/ACCESS.2021.3089515. DOI: https://doi.org/10.1109/ACCESS.2021.3089515
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Salwa Shakir Baawi, Farah Jawad Al-Ghanim, Nisreen Ryadh Hamza

This work is licensed under a Creative Commons Attribution 4.0 International License.