Blockchain Scalability Analysis and Improvement of Bitcoin Network through Enhanced Transaction Adjournment Techniques
DOI:
https://doi.org/10.31185/wjcms.298Keywords:
Blockchain, BlockSim, SupplyChain, Bitcoin, Litecoin, Dogecoin, and Peercoin.Abstract
Bitcoin is the most popular among the cryptocurrency it includes Litecoin, Dogecoin, and Peercoin. Blockchain is the foundation of cryptocurrencies, most cryptocurrency technologies are decentralized. Despite its benefits, blockchain remains a cutting-edge technology with flaws that can be addressed to increase efficiency. Therefore, this research digs into the topic of scalability in blockchains and presents a comparative analysis of numerous blockchain metrics with real time data. We performed this using a blockchain simulation (BlockSim), and then looked at effective techniques that may be utilized to overcome the limitation by comparing the simulator and real-world circumstances. The second part of this research work proposes an effective algorithm that improves scalability of Bitcoin network through efficient transaction deferment. In this study, we propose an algorithm that improves the current Bitcoin protocols using Inventory messaging (INV) and transaction deferment or adjournment. The deferred transaction relay on the message to carry multiple raw transactions. These improvements are compatible with the existing Bitcoin Network protocols. The improve algorithm was simulated using BlockSim and AnyLogic Multi Paradigm Simulation Engine, the simulators ware configured with 1000 nodes interconnected in a Bitcoin Like Peer-to-Peer network. The result of the simulation shows that the adjourned transaction protocol provides for a controlled reduction in the number of messages required to propagate a transaction at the cost of a modest increase in transaction propagation time. We may manage the tradeoff between the quantity of messages and propagation latency by adjusting the threshold and timeout values, thereby improving the network's overall scalability.
Bitcoin is the most popular among the cryptocurrency it includes Litecoin, Dogecoin, and Peercoin. Blockchain is the foundation of cryptocurrencies, most cryptocurrency technologies are decentralized. Despite its benefits, blockchain remains a cutting-edge technology with flaws that can be addressed to increase efficiency. Therefore, this research digs into the topic of scalability in blockchains and presents a comparative analysis of numerous blockchain metrics with real time data. We performed this using a blockchain simulation (BlockSim), and then looked at effective techniques that may be utilized to overcome the limitation by comparing the simulator and real-world circumstances. The second part of this research work proposes an effective algorithm that improves scalability of Bitcoin network through efficient transaction deferment. In this study, we propose an algorithm that improves the current Bitcoin protocols using Inventory messaging (INV) and transaction deferment or adjournment. The deferred transaction relay on the message to carry multiple raw transactions. These improvements are compatible with the existing Bitcoin Network protocols. The improve algorithm was simulated using BlockSim and AnyLogic Multi Paradigm Simulation Engine, the simulators ware configured with 1000 nodes interconnected in a Bitcoin Like Peer-to-Peer network. The result of the simulation shows that the adjourned transaction protocol provides for a controlled reduction in the number of messages required to propagate a transaction at the cost of a modest increase in transaction propagation time. We may manage the tradeoff between the quantity of messages and propagation latency by adjusting the threshold and timeout values, thereby improving the network's overall scalability.
Downloads
References
S. Nakamoto, ``Bitcoin: A peer-to-peer electronic cash
system,'' Manubot, Tech. Rep., 2008.
G. Wood, ``Ethereum: A secure decentralised generalised
transaction ledger,'' Ethereum Project Yellow Paper, vol. 151, pp. 1_32, Apr. 2014.
C. Cachin, ``Architecture of the hyperledger blockchain
fabric,'' in Proc. Workshop Distrib. Cryptocurrencies Consensus Ledgers, vol. 310, 2016.
H. Wang, Z. Zheng, S. Xie, H. N. Dai, and X. Chen,
``Blockchain challenges and opportunities: A survey,'' Int. J. Web Grid Services, vol. 14, no. 4, p. 352, 2018. DOI: https://doi.org/10.1504/IJWGS.2018.095647
P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu, ``A
detailed and real-time performance monitoring framework for blockchain systems,'' in Proc. 40th Int. Conf. Softw. Eng. Softw. Eng. Pract.-ICSE-SEIP, 2018, pp. 134_143. DOI: https://doi.org/10.1145/3183519.3183546
The Scalability Trilemma in Blockchain. Accessed: Sep. 1,
[Online]. Available:
https://medium.com/@aakash_13214/the-scalability-trilemmain-blockchain-75fb57f646df
S. Gilbert and N. Lynch, ``Brewer's conjecture and the
feasibility of consistent, available, partition-tolerant web services,'' SIGACT News, vol. 33, no. 2, p. 51, Jun. 2002. DOI: https://doi.org/10.1145/564585.564601
X. Li, P. Jiang, T. Chen, X. Luo, and Q.Wen, ``A survey
on the security of blockchain systems,'' Future Gener. Comput. Syst., to be published.
Bitcoin Cash. Accessed: Sep. 1, 2021. [Online]. Available:
Bip152. Accessed: Sep. 1, 2021. [Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena, ``A secure sharding protocol for open blockchains,'' in Proc. ACM SIGSACConf. Comput. Commun. Secur.-CCS, 2016, pp. 17_30.
E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E.
Syta, and B. Ford, ``OmniLedger: A secure, scale-out, decentralized ledger via sharding,'' in Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 583_598.
M. Zamani, M. Movahedi, and M. Raykova, ``RapidChain: Scaling blockchain via full sharding,'' in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Jan. 2018, pp. 931_948.
J. Wang and H. Wang, ``Monoxide: Scale out blockchains with asynchronous consensus zones,'' in Proc. 16th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2019, pp. 95_112.
I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, ``Bitcoin-NG: A scalable blockchain protocol,'' in Proc. 13th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2016, pp. 45_59.
Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, ``Algorand: Scaling byzantine agreements for cryptocurrencies,'' in Proc. 26th Symp. Operating Syst. Princ.-SOSP, 2017, pp. 51_68. DOI: https://doi.org/10.1145/3132747.3132757
I. Bentov, R. Pass, and E. Shi, ``Snow white: Provably secure proofs of stake,'' IACR Cryptol. ePrint Archive, vol. 2016, p. 919, Sep. 2016.
A. Kiayias, A. Russell, B. David, and R. Oliynykov, ``Ouroboros: A provably secure proof-of-stake blockchain protocol,'' in Proc. Annu. Int. Cryptol. Conf. Santa Barbara, CA, USA: Springer, 2017, pp. 357_388. DOI: https://doi.org/10.1007/978-3-319-63688-7_12
B. David, P. Gaºi, A. Kiayias, and A. Russell, ``Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain,'' in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Tel Aviv, Israel: Springer, 2018, pp. 66_98. DOI: https://doi.org/10.1007/978-3-319-78375-8_3
J. Poon and T. Dryja. (2016). The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. [Online]. Available: https://www.bitcoinlightning.com
J. Poon and V. Buterin, ``Plasma: Scalable autonomous smart contracts,'' White Paper, 2017, pp. 1_47. [Online]. Available: https://www.plasma.io
Cosmos. Accessed: Nov. 1, 2021. [Online]. Available: https://cosmos.network/whitepaper
K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi, D. Song, R. Wattenhofer, and E. G. Sirer, ``On scaling decentralized blockchains,'' in Proc. Int. Conf. Financial Cryptogr. Data Secur. Christ Church, Barbados: Springer, 2016, pp. 106_125. DOI: https://doi.org/10.1007/978-3-662-53357-4_8
Scalability of Bitcoin. Accessed: Jan. 1, 2021. [Online]. Available: https://en.bitcoin.it/wiki/Scalability
E. K. Kogias, P. Jovanovic, N. Gailly, I. Khof_, L. Gasser, and B. Ford, ``Enhancing bitcoin security and performance with strong consistency via collective signing,'' in Proc. 25th USENIX Security Symp. USENIX Secur., 2016, pp. 279_296.
C. Decker and R.Wattenhofer, ``A fast and scalable payment network with bitcoin duplex micropayment channels,'' in Proc. Symp. Self-Stabilizing Syst. Edmonton, AB, Canada: Springer, 2015, pp. 3_18. DOI: https://doi.org/10.1007/978-3-319-21741-3_1
Raiden Network. Accessed: Sep. 1, 2021. [Online]. Available: https://raiden.network/
A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, ``Sprites and state channels: Payment networks that go faster than lightning,'' in Proc. Int. Conf. Financial Cryptogr. Data Secur. Frigate Bay, St. Kitts: Springer, 2019, pp. 508_526. DOI: https://doi.org/10.1007/978-3-030-32101-7_30
A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timón, and P. Wuille. (2014). Enabling Blockchain Innovations With Pegged Sidechains. [Online]. Available: http://www.opensciencereview.com/papers/123/enablingblockchaininnovations-with pegged-sidechains
Liquidity Network. Accessed: Sep. 1, 2021. [Online]. Available: https://liquidity.network/
G.Wood, ``Polkadot: Vision for a heterogeneous multi-chain framework,'' Polkadot, White Paper, 2016.
J. Teutsch and C. Reitwieÿner, ``A scalable veri_cation solution for blockchains,'' 2019, arXiv:1908.04756. [Online]. Available: https://arxiv.org/abs/1908.04756
H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten, ``Arbitrum: Scalable, private smart contracts,'' in Proc. 27th USENIX Secur. Symp. USENIX Secur., 2018, pp. 1353_1370.
E. Lombrozo, J. Lau, and P. Wuille, ``Segregated witness (consensus layer),'' Bitcoin Core Develop. Team, Tech. Rep., 2015.
D. Ding, X. Jiang, J.Wang, H.Wang, X. Zhang, and Y. Sun, ``Txilm: Lossy block compression with salted short hashing,'' 2019, arXiv:1906.06500. [Online]. Available: https://arxiv.org/abs/1906.06500
Z. Xu, S. Han, and L. Chen, ``CUB, a consensus unit-based storage scheme for blockchain system,'' in Proc. IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018, pp. 173_184.
X. Dai, J. Xiao, W. Yang, C. Wang, and H. Jin, ``Jidar: A jigsaw-like data reduction approach without trust assumptions for bitcoin system,'' in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 1317_1326.
Y. Lewenberg, Y. Sompolinsky, and A. Zohar, ``Inclusive block chain protocols,'' in Proc. Int. Conf. Financial Cryptogr. Data Secur. San Juan, Puerto Rico: Springer, 2015, pp. 528_547. DOI: https://doi.org/10.1007/978-3-662-47854-7_33
Y. Sompolinsky, Y. Lewenberg, and A. Zohar, ``Spectre: A fast and scalable cryptocurrency protocol,'' IACR Cryptol. ePrint Archive, vol. 2016, p. 1159, 2016.
Y. Sompolinsky and A. Zohar, ``Phantom: A scalable blockdag protocol,'' IACR Cryptol. ePrint Archive, vol. 2018, p. 104, 2018.
C. Li, P. Li, D. Zhou,W. Xu, F. Long, and A. Yao, ``Scaling nakamoto consensus to thousands of transactions per second,'' 2018, arXiv:1805.03870. [Online]. Available: https://arxiv.org/abs/1805.03870
S. D. Lerner. (2015). Dagcoin: A CryptocurrencyWithout Blocks. [Online]. Available: https://bitslog.com/2015/09/11/dagcoin/
Iota. Accessed: Jan. 22, 2022. [Online]. Available:
A. Churyumov. (2016). Byteball: A Decentralized System For Storage and Transfer of Value. [Online]. Available: https://byteball.org/Byteball.pdf
C. LeMahieu. Nano: A Feeless Distributed Cryptocurrency Network. Accessed: Mar. 24, 2021. [Online]. Available: https://nano.org/en/ whitepaper
G. Naumenko, G. Maxwell, P. Wuille, S. Fedorova, and I. Beschastnikh, ``Bandwidth-ef_cient transaction relay for bitcoin,'' 2019, arXiv: 1905.10518. [Online]. Available: https://arxiv.org/abs/1905.10518
E. Rohrer and F. Tschorsch, ``Kadcast: A structured approach to broadcast in blockchain networks,'' in Proc. 1st ACM Conf. Adv. Financial Technol., 2019, pp. 199_213.
N. Chawla, H. W. Behrens, D. Tapp, D. Boscovic, and K. S. Candan, Velocity: Scalability improvements in block propagation through rateless erasure coding, in Proc. IEEE Int. Conf. Blockchain Cryptocurrency (ICBC), May 2019, pp. 447_454.
U. Klarman, S. Basu, A. Kuzmanovic, and E. G. Sirer, ``Bloxroute: A scalable trustless blockchain distribution network whitepaper,'' White Paper.
I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. B. Tran, and P. Rimba, ``On availability for blockchain-based systems,'' in Proc. IEEE 36th Symp. Reliable Distrib. Syst. (SRDS), Sep. 2017, pp. 64_73. DOI: https://doi.org/10.1109/SRDS.2017.15
Decentralized Application. Accessed: Dec. 12, 2021. [Online]. Available: https://en.wikipedia.org/wiki/Decentralized_application/
H. Vranken, ``Sustainability of bitcoin and blockchains,'' Current Opinion Environ. Sustainability, vol. 28, pp. 1_9, Oct. 2017. DOI: https://doi.org/10.1016/j.cosust.2017.04.011
Decentralized Application. Accessed: Dec. 12, 2021.
[Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
First Bitcoin Cash Block Mined. Accessed: Sep. 18, 2021. [Online]. Available: https://news.bitcoin.com/fork-watch-_rst-bitcoin-cash-block-mined/
Block size limit controversy. Accessed: Sep. 18, 2021. [Online]. Available: https://en.bitcoin.it/wiki/Block-size-limit_controversy
Block Size Increase. Accessed: Sep. 18, 2021. [Online]. Available: https://bitfury.com/content/downloads/block-size-1.1.1.pdf
S. Elmohamed. Towards Massive On-Chain Scaling: Block Propagation Results With Xthin. Accessed: Sep. 18, 2021. [Online]. Available: https://medium.com/@peter_r/towards-massive-on-chain-scaling-blockpropagation-results-with-xthin-a0f1e3c23919
Lumino Transaction Compression Protocol(LTCP). Accessed: Sep. 18, 2021. [Online]. Available: https://docs.rsk.co/LuminoTransactionCompressionProtocolLTCP.pdf
Y. Sompolinsky and A. Zohar, ``Secure high-rate transaction processing in bitcoin,'' in Proc. Int. Conf. Financial Cryptogr. Data Secur. San Juan, Puerto Rico: Springer, 2015, pp. 507_527. [60] Casper-Proof-of-Stake-Compendium. Accessed: Sep. 18, 2021. [Online]. Available: https://github.com/ethereum/wiki/wiki/Casper-Proof-of-Stakecompendium DOI: https://doi.org/10.1007/978-3-662-47854-7_32
Larimer, ``Delegated proof-of-stake (dpos),'' Bitshare, White Paper, 2014.
Bitshares Blockchain. Accessed: Sep. 18, 2021. [Online]. Available: https://bitshares.org/
eosio, The Most Powerful Infrastructure for Decentralized Applications. Accessed: Sep. 13, 2021. [Online]. Available: https://eos.io/
Eos:Less Than 1% of EOS Addresses Hold 86% of the Tokens! Accessed: Sep. 18, 2021. [Online]. Available: https://medium.com/@freetokencryptobounty/eos-less-than-1-of-eos-addresseshold-86-of-the-tokens-5ad4b2eac403
M. Castro and B. Liskov, ``Practical byzantine fault tolerance,'' in Proc. OSDI, vol. 99, 1999, pp. 173_186.
Byzantine Fault. Accessed: Dec. 10, 2021. [Online]. Available: https://en.wikipedia.org/wiki/Byzantine_fault
E. Buchman, ``Tendermint: Byzantine fault tolerance in the age of blockchains,'' Ph.D. dissertation, Tendermint, 2016.
E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly, I. Khof_, and B. Ford, ``Keeping authorities `honest or bust' with decentralized witness cosigning,'' in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 526_545. DOI: https://doi.org/10.1109/SP.2016.38
R. Pass and E. Shi, ``Hybrid consensus: Ef_cient consensus in the permissionless model,'' in Proc. 31st Int. Symp. Distrib. Comput. (DISC), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman, ``Solida: A blockchain protocol based on recon_gurable byzantine consensus,'' 2016, arXiv:1612.02916. [Online]. Available: https://arxiv.org/abs/1612.02916
Proof of Authority-Wikipedia. Accessed: Sep. 1, 2019. [Online]. Available:
https://en.wikipedia.org/wiki/Proof_of_authority
Proof-of-Capacity. Accessed: Dec. 10, 2021. [Online]. Available: https://burstwiki.org/en/proof-of-capacity/
A. Nandwani, M. Gupta, and N. Thakur, ``Proof-of-participation: Implementation
of proof-of-stake through proof-of-work,'' in Proc. Int. Conf. Innov. Comput. Commun. New Delhi, India: Springer, 2019, pp. 17_24.
Shard Wiki. Accessed: Dec. 10, 2021. [Online]. Available: https://en.wikipedia.org/wiki/Shard_(database_architecture)
E. Fynn and F. Pedone, ``Challenges and pitfalls of partitioning blockchains,'' in Proc. 48th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. Workshops (DSN-W), Jun. 2018, pp. 128_133. DOI: https://doi.org/10.1109/DSN-W.2018.00051
E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khof_, M. J. Fischer, and B. Ford, ``Scalable bias-resistant distributed randomness,'' in Proc. IEEE Symp. Secur. Privacy (SP), May 2017, pp. 444_460. DOI: https://doi.org/10.1109/SP.2017.45
Light-Weight User. Accessed: Dec. 10, 2021. [Online]. Available: https://en.bitcoin.it/wiki/Lightweight_node
The Zilliqa Technical Whitepaper, Z. Team, Oakbrook Terrace, IL, USA, Sep. 2017, vol. 16, p. 2019.
The Harmony Team. Open Consensus for 10 Billion People. Accessed: Dec. 10, 2021. [Online]. Available: https://harmony.one/
Dag (Directed Acyclic Graph). Accessed: Jan. 22, 2022. [Online].Available: https://en.wikipedia.org/wiki/Directed_acyclic_graph
Fantom. Accessed: Jan. 22, 2022. [Online]. Available: https://fantom.foundation/
S. Popov, ``The tangle,'' cit. on, p. 131, 2016.
B. Kusmierz, ``The first glance at the simulation of the tangle: Discrete model,'' IOTA, Tech. Rep., 2017.
B. Kusmierz, P. Staupe, and A. Gal, ``Extracting tangle properties in continuous time via large-scale simulations,'' Tech. Rep., 2018.
A. Cullen, P. Ferraro, C. King, and R. Shorten, ``Distributed ledger technology for iot: Parasite chain attacks,'' 2019, arXiv:1904.00996. [Online]. Available: https://arxiv.org/abs/1904.00996
L. Baird, M. Harmon, and P. Madsen, ``Hedera: A governing council & public hashgraph network,'' Trust layer Internet, Whitepaper, vol. 1, 2018.
T. Rocket, ``Snow_ake to avalanche: A novel metastable consensus protocol family for cryptocurrencies,'' IPFS, Tech. Rep., 2018.
Complaints About IOTA. Accessed: Jan. 22, 2022. [Online]. Available: https://juejin.im/post/5c6e0f0bf265da2de66103dd
Double-Spending. Accessed: Jan. 22, 2022. [Online].
Available: https://en.wikipedia.org/wiki/Double-spending
Lightning Labs. Accessed: Sep. 1, 2019. [Online].
Available: https://lightning.engineering/
Bitmex-The Lightning Network. Accessed: Sep. 12, 2020. [Online]. Available: https://blog.bitmex.com/the-lightning-network/
Erc20 Token Standard. Accessed: Sep. 12, 2020.
[Online]. Available: https://theethereum.wiki/w/index.php/ERC20_Token_Standard
Lightning Network Daemon. Accessed: Sep. 12, 2020. [Online]. Available: https://github.com/lightningnetwork/lnd
C-Lightning_A Lightning Network Implementation in C. Accessed: Sep. 12, 2020. [Online]. Available: https://github.com/ElementsProject/lightning
A Scala Implementation of the Lightning Network. Accessed: Sep. 1, 2020. [Online]. Available: https://github.com/ACINQ/eclair
G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M. Maffei, ``Anonymous multi-hop locks for blockchain scalability and interoperability,'' in Proc. Netw. Distrib. Syst. Secur. Symp., 2019. DOI: https://doi.org/10.14722/ndss.2019.23330
Simplified Payment Veri_cation. Accessed: Sep. 1, 2020. [Online]. Available: https://en.bitcoinwiki.org/wiki/Simpli_ed_Payment_Veri_cation
Minimal Viable Plasma. Accessed: Sep. 1, 2020. [Online]. Available: https://ethresear.ch/t/minimal-viable-plasma/426
Minimal Viable Plasma. Accessed: Sep. 1, 2019. [Online]. Available: https://ethresear.ch/t/plasma-cash plasma-with-much-less-per-userdata-checking/1298
Sparse Merkle Trees. Accessed: Sep. 1, 2020. [Online]. Available: https://ethresear.ch/t/optimizing-sparse-merkle-trees/3751
Plasma Debit: Arbitrary-Denomination Payments in Plasma Cash. Accessed: Sep. 1, 2019. [Online]. Available: https://ethresear.ch/t/plasmadebit-arbitrary-denomination-payments-in-plasma-cash/2198
R. Khalil and A. Gervais, ``NOCUST_a non-custodial 2nd-layer _nancial intermediary,'' Cryptology ePrint Archive, Report 2018/642, 2018. [Online]. Available: https://eprint.iacr.org/2018/642
Tendermint. Accessed: Sep. 1, 2020. [Online]. Available: https://tendermint.com/
E. Politou, F. Casino, E. Alepis, and C. Patsakis, ``Blockchain mutability: Challenges and proposed solutions,'' 2019, arXiv:1907.07099. [Online]. Available: https://arxiv.org/abs/1907.07099
M. Florian, S. Henningsen, S. Beaucamp, and B. Scheuermann, ``Erasing data from blockchain nodes,'' in Proc. IEEE Eur. Symp. Secur. Privacy Workshops (EuroS&PW), Jun. 2019, pp. 367_376. DOI: https://doi.org/10.1109/EuroSPW.2019.00047
Ethereum Chain Pruning for Long Term 1.0 Scalability and Viability. Accessed: Sep. 12, 2020. [Online]. Available:https://ethereum-magicians.org/t/ethereum-chain-pruning-for-long-term-1-0-scalability-and-viability/2074
P. Maymounkov and D. Mazieres, ``Kademlia: A peer-to-peer information system based on theXOR metric,'' in Proc. Int.Workshop Peer-to-Peer Syst. Cambridge, MA, USA: Springer, 2002, pp. 53_65. DOI: https://doi.org/10.1007/3-540-45748-8_5
Peck, M. E. Adam Back says the Bitcoin fork is a coup, http://spectrum.ieee.org/tech-talk/computing/networks/the-bitcoin-for-is-a-coup, Aug 2015
S. Ben Mariem, P. Casas, and B. Donnet. Vivisecting blockchain P2P networks: Unveiling the Bitcoin IP network. In ACM CoNEXT Student Workshop, 2018.
G. Fanti, S. B. Venkatakrishnan, S. Bakshi, B. Denby, S. Bhargava, A. Miller, and P. Viswanath. Dandelion++: Lightweight cryptocurrency networking with formal anonymity guarantees. In 2018 ACM International Conference on Measurement and Modeling of Computer Systems – SIGMETRICS’18, 2018. DOI: https://doi.org/10.1145/3219617.3219620
G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh. Erlay: Efficient transaction relay for bitcoin. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages 817–831, London, UK, 2019.
Scherer, M. (2017). Performance and scalability of blockchain networks and smart contracts.
Klarman, U., Basu, S., Kuzmanovic, A., & Sirer, E. G. (2018). bloxroute: A scalable trustless blockchain distribution network whitepaper. IEEE Internet Things J.
Chawla, N., Behrens, H. W., Tapp, D., Boscovic, D., & Candan, K. S. (2019). Velocity: Scalability improvements in block propagation through rateless erasure coding. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (pp. 447-454). IEEE. https://doi.org/10.1109/BLOC.2019.8751427 DOI: https://doi.org/10.1109/BLOC.2019.8751427
Rohrer, E. & Tschorsch, F. (2019). Kadcast: A structured approach to broadcast in blockchain networks. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies (pp. 199-213). https://doi.org/10.1145/3318041.3355469 DOI: https://doi.org/10.1145/3318041.3355469
Naumenko, G., Maxwell, G., Wuille, P., Fedorova, A., & Beschastnikh, I. (2019). Erlay: Efficient Transaction Relay for Bitcoin. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (pp. 817-831). https://doi.org/10.1145/3319535.3354237 DOI: https://doi.org/10.1145/3319535.3354237
Lombrozo, E., Lau, J., & Wuille, P. (2015). Segregated witness (consensus layer). Bitcoin Core Develop. Team, Tech. Rep. BIP, 141.
Xu, Z., Han, S., & Chen, L. (2018). Cub, a consensus unit-based storage scheme for blockchain system. In 2018 IEEE 34th International Conference on Data Engineering (ICDE) (pp. 173-184). IEEE. https://doi.org/10.1109/ICDE.2018.00025 DOI: https://doi.org/10.1109/ICDE.2018.00025
Dai, X., Xiao, J., Yang, W., Wang, C., & Jin, H. (2019, July). Jidar: A jigsaw-like data reduction approach without trust assumptions for bitcoin system. In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS) (pp. 1317-1326). IEEE. https://doi.org/10.1109/ICDCS.2019.00132 DOI: https://doi.org/10.1109/ICDCS.2019.00132
Dang, H., Dinh, T. T. A., Loghin, D., Chang, E. C., Lin, Q., & Ooi, B. C. (2019, June). Towards scaling blockchain systems via sharding. In Proceedings of the 2019 International Conference on Management of Data (pp. 123-140). https://doi.org/10.1145/3299869.3319889 DOI: https://doi.org/10.1145/3299869.3319889
Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., & Saxena, P. (2016, October). A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 17-30). https://doi.org/10.1145/2976749.2978389 DOI: https://doi.org/10.1145/2976749.2978389
Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., & Ford, B. (2018, May). Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP) (pp. 583-598). IEEE. https://doi.org/10.1109/SP.2018.000-5 DOI: https://doi.org/10.1109/SP.2018.000-5
Zamani, M., Movahedi, M., & Raykova, M. (2018, January). Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (pp. 931-948). DOI: https://doi.org/10.1145/3243734.3243853
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Umar Danjuma Maiwada

This work is licensed under a Creative Commons Attribution 4.0 International License.