Solving the coupled Schrödinger -Korteweg- de-Vries system by modified variational iteration method with genetic algorithm

Solving the coupled Schrödinger -Korteweg- de-Vries system by modified variational iteration method with genetic algorithm

Authors

  • Ali Mustafa University of Mosul/College of Computer Science and Mathematics
  • Waleed Al-Hayani Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Iraq

DOI:

https://doi.org/10.31185/wjcm.127

Keywords:

coupled Schrödinger–KdV equation, Genetic Algorithm, Lagrange multiplier, Variational iteration method, Modified variational iteration method

Abstract

             A system of nonlinear partial differential equations was solved using a modified variational iteration method (MVIM) combined with a genetic algorithm. The modified method introduced an auxiliary parameter (p) in the correction functional to ensure convergence and improve the outcomes. Before applying the modification, the traditional variational iteration method (VIM) was used firstly. The method was applied to numerically solve the system of Schrödinger-KdV equations. By comparing the two methods in addition to some of the previous approaches, it turns out the new algorithm converges quickly, generates accurate solutions and shows improved accuracy. Additionally, the method can be easily applied to various linear and nonlinear differential equations.

References

Ali H. A., Ahmed S. J., Mustafa T. Y., Mohammed R.,Omer B. & Taher A. N. (2022). A Comparison of Finite Difference and Finite Volume Methods with Numerical Simulations: Burgers Equation Model, Complexity, 2022: 9367638, doi: 10.1155/2022/9367638. DOI: https://doi.org/10.1155/2022/9367638

Mariam S., Uroosa A., Ali H. A., Omar B., Areej A. & Kamsing N. (2022). New Efficient Computations with Symmetrical and Dynamic Analysis for Solving Higher-Order Fractional Partial Differential Equations, Symmetry 2022, 14(8), doi.10.3390/sym14081653.. DOI: https://doi.org/10.3390/sym14081653

Baleanu D., Inc M., Yusuf A. & Aliyu A. (2018). Traveling wave solutions and conservation laws for nonlinear evolution equation, Journal of Mathematical Physics, 59(2): doi: 10.1063/1.5022964. DOI: https://doi.org/10.1063/1.5022964

Redi R., Obsie Y. & Shiferaw A. (2018). The Improved (G'/G)-Expansion Method to the Generalized Burgers-Fisher Equation, Mathematical Modelling and Applications, 3(1): 16–30, doi: 10.11648/j.mma.20180301.13. DOI: https://doi.org/10.11648/j.mma.20180301.13

Doosthoseini A. (2010). Variational Iteration Method for Solving Coupled Schrödinger-KdV Equation, Applied Mathematical Sciences, 4(17): 823- 837.

Safavi M. (2018). Numerical solution of coupled Schrödinger–KdV equation via modified variational iteration algorithm-II, SeMA Journal, 75: 499–516 (2018), doi: 10.1007/s40324-018-0147-3. DOI: https://doi.org/10.1007/s40324-018-0147-3

Küçükarslan S. (2009). Homotopy perturbation method for coupled Schrödinger–KdV equation, Nonlinear Analysis: RealWorld Applications, 10 (2009): 2264–2271. DOI: https://doi.org/10.1016/j.nonrwa.2008.04.008

Hakeem U., Saeed I., Muhammad I., Mehreen F. & Zahoor U. (2014). An Extension of the Optimal Homotopy Asymptotic Method to Coupled Schrödinger-KdV Equation, International Journal of Differential Equations, 2014: 106934, doi: 10.1155/2014/106934. DOI: https://doi.org/10.1155/2014/106934

Karthivel M. & Sivasankari M. K. (2021). Approximate Solutions Of Chemical Reaction - Diffusion Brusselator System And Coupled Schrodinger - Kdv Equation Using New Iterative Method, International Journal of Modern Agriculture, 10(1): 2305-7246.

Yavuz M., Sulaiman T., Yusuf A. & Abdeljawad T. (2021). The Schro¨ dinger-KdV equation of fractional order with Mittag-Leffler nonsingular kernel, Alexandria Engineering Journal, 60(2): 2715-2724, doi: 10.1016/j.aej.2021.01.009. DOI: https://doi.org/10.1016/j.aej.2021.01.009

Xie S. & Yi S. (2020). A conservative compact finite difference scheme for the coupled Schrodinger-KdV equations, Adv Comput Math, 46(1): 2020, doi: 10.1007/s10444-020-09758-2. DOI: https://doi.org/10.1007/s10444-020-09758-2

Yifei Huang Y., Peng G., Zhang G. & Zhang H. (2023). High-order Runge–Kutta structure-preserving methods for the coupled nonlinear Schrödinger–KdV equations, Mathematics and Computers in Simulation, 208: 603-618, doi:10.1016/j.matcom.2023.01.031. DOI: https://doi.org/10.1016/j.matcom.2023.01.031

Rezazadeh H., Davodi A. & Gholami D. (2023). Combined formal periodic wave-like and soliton-like solutions of the conformable Schr¨odinger-KdV equation using the (G′/G)-expansion technique, Results in Physics, 47(2023): 106352, doi: 10.1016/j.rinp.2023.106352. DOI: https://doi.org/10.1016/j.rinp.2023.106352

Owyed S., Abdou M.A., Abdel-Aty A., Alharbi W. & Nekhili R. (2019). Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via re duce d differential transform method, Chaos, Solitons and Fractals, 131(2020): 109474, doi: 10.1016/j.chaos.2019.109474. DOI: https://doi.org/10.1016/j.chaos.2019.109474

Ojobor S. A. & Obihia A. (2021). Modified Variational Iteration Method for Solving Nonlinear Partial Differential Equation Using Adomian Polynomials, Mathematics and Statistics, 9(4): 456-464, doi: 10.13189/ms.2021.090406. DOI: https://doi.org/10.13189/ms.2021.090406

Wazwaz A. (2020). Optical bright and dark soliton solutions for coupled nonlinear Schrodinger (CNLS) equations by the variational iteration method, International Journal for Light and Electron Optics, 207(2): 164457, doi: 10.1016/j.ijleo.2020.164457. DOI: https://doi.org/10.1016/j.ijleo.2020.164457

Nadeem M. & He J. H. (2021). He–Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics, Journal of Mathematical Chemistry, 59(5): 1234–1245, doi: 10.1007/s10910-021-01236-4. DOI: https://doi.org/10.1007/s10910-021-01236-4

Ahmad H. & Khan T. A. (2020). Variational iteration algorithm I with an auxiliary parameter for the solution of differential equations of motion for simple and damped mass – spring systems, Noise and Vibration Worldwide, 51(1-2): 12–20, doi: 10.1177/0957456519889958. DOI: https://doi.org/10.1177/0957456519889958

Aljuhani A., Maturi D. & Alshehri H. (2022). Variational Iteration Method for Solving Boussinesq Equations Using Maple, Applied Mathematics, 13(12): 960-967, doi: 10.4236/am.2022.1312060. DOI: https://doi.org/10.4236/am.2022.1312060

Deb K. (1999). An introduction to genetic algorithms, Academy Proceedings in Engineering Sciences, 24(4): 293–315, doi: 10.1007/BF02823145. DOI: https://doi.org/10.1007/BF02823145

Sari M. & Tuna C. (2018). Prediction of Pathological Subjects Using Genetic Algorithms, Computational and Mathematical Methods in Medicine, doi.org/10.1155/2018/6154025. DOI: https://doi.org/10.1155/2018/6154025

Downloads

Published

2023-07-01

How to Cite

Mustafa, A., & Al-Hayani, W. (2023). Solving the coupled Schrödinger -Korteweg- de-Vries system by modified variational iteration method with genetic algorithm. Wasit Journal of Computer and Mathematics Science, 2(2), 103–113. https://doi.org/10.31185/wjcm.127

Issue

Section

Mathematics
Loading...