0n Fuzzy Soft (α,β)-class(Q)operator
DOI:
https://doi.org/10.31185/wjcms.291Keywords:
FS-class(Q) operator, FS(α,β)-normal operator, and fuzzy soft(α,β)-class(Q) operatorAbstract
this paper present a new type of operator , referred to as the fuzzy soft class (Q) operator , which operator on a complex Hilbert space . we examin several advantageous properties that are exclusive this operator class.
Additionally , we explore an extended version of several fuzzy soft class Q operator in this work , introduce fuzzy soft (a,b)class (Q) and fuzzy soft (a,b)normal operator. we also provide some theorems of operations related to these notions.
Downloads
References
T. Beaula and M. M. Priyanga, "A new notion for fuzzy soft normed linear space," Int. J. Fuzzy Math. Arch., vol. 9, no. 1, pp. 81–90, 2015.
T. Beaula and M. M. Priyanga, "Fuzzy soft linear operator on fuzzy soft normed linear spaces," Int. J. Appl. Fuzzy Sets Artif. Intell., vol. 6, pp. 73–92, 2016.
Y. Boushra and F. Sara, "Characterization on fuzzy soft ordered Banach algebra," Boletim da Sociedade Paranaense de Matemática (BSPM), vol. 40, no. 3s, pp. 1–8, 2022. DOI: https://doi.org/10.5269/bspm.51387
S. Das and S. K. Samanta, "On soft inner product spaces," Ann. Fuzzy Math. Inform., vol. 6, no. 1, pp. 151–170, 2013.
N. Faried, M. S. Ali, and H. H. Sakr, "Fuzzy soft Hilbert spaces," Math. Stat., vol. 8, no. 3, pp. 142–157, 2020. DOI: https://doi.org/10.22436/jmcs.022.02.06
N. Faried, M. S. Ali, and H. H. Sakr, "On fuzzy soft linear operators in fuzzy soft Hilbert space," Abstr. Appl. Anal., 2020. DOI: https://doi.org/10.1155/2020/5804957
N. Faried, M. S. Ali, and H. H. Sakr, "Fuzzy soft inner product spaces," Appl. Math. Inf. Sci., vol. 14, no. 4, pp. 709–720, 2020. DOI: https://doi.org/10.18576/amis/140419
A. A. S. Jibril, "On operators for which (T^{(2)} T^2 = (T^ T)^2," Int. Math. Forum, vol. 5, no. 46, pp. 2255–2262, 2010.
B. Manoj, J. N. Tridiv, and K. S. Dusmanta, "A study on some operations of fuzzy soft sets," Int. J. Mod. Eng. Res., vol. 2, no. 2, pp. 219–225, 2012.
P. K. Maji, R. Biswas, and A. R. Roy, "Fuzzy soft set," J. Fuzzy Math., vol. 9, no. 3, pp. 677–692, 2001.
D. Molodtsov, "Soft set theory—First results," Comput. Math. Appl., vol. 37, pp. 19–31, 1999. DOI: https://doi.org/10.1016/S0898-1221(99)00056-5
L. Zadeh, "Fuzzy sets," Inf. Control, vol. 8, pp. 338–353, 1965. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hanan Khalid

This work is licensed under a Creative Commons Attribution 4.0 International License.