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Abstract—Due to their combination of security and economic viability, fin-

ger vein biometrics have gained considerable traction in recent years. They 

have the advantage of being the least vulnerable to identity theft because veins 

are present beneath the skin, as well as being unaffected by the ageing process 

of the user. To address the ever-increasing need for security, all of these varia-

bles necessitate working models. Using face recognition and AI-based biomet-

rics has become a hot subject in law enforcement because of the accidental de-

mographic bias it introduces into the process. Biometric prejudice, on the other 

hand, has far-reaching implications that transcend into everyday situations. 

When an ATM transaction or an online banking transaction is compromised by 

a fake positive or negative verification, it makes it simpler for fraudsters to car-

ry out their criminal activities. The veins of a fingertip were the subject of this 

research project's investigation. Deep convolutional neural network models 

were utilised to extract features from two widely-used and freely-available da-

tasets of finger veins. Finger vein identification as a unique biometric approach 

has received a lot of attention recently. Accuracy of greater than 98 percent is 

reached with the deployment of multi-class categorization. The binary classifi-

cation based model has a 97.51 percent accuracy rate. The total outcomes and 

their effectiveness are fairly good with the implementation situations. Deep 

learning, an end-to-end technique that has demonstrated promising results in 

domains like face recognition and target detection, may be useful for finger vein 

recognition. 

Keywords—Deep Learning, Finger Vein Detection, Finger Vein Analysis us-

ing Deep Learning 
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1 Introduction 

To authenticate a person's identification, a biometric authentication system 

measures certain physical traits or behaviors of the person's body in real-time. Iris 

scanners, for example, use biometric data to create digital representations of a per-

son's identity. Accordingly, biometric authentication systems may identify or validate 

the individual by comparing the data to other biometric records in the database using 

algorithms. Biometric authentication systems have two primary modes of operation: 

identification and verification. The input data is compared to all known patterns in the 

database in the identification mode. It is possible to determine if this individual is in 

the database using the system. Biometric input data is compared to a single person's 

unique pattern when in verification mode. If they're not the same person, it's a way to 

stop many individuals from using the same identity [1-2]. 

 

Fig. 1. Finger Vein Recognition Patterns. 

Biometric identification systems, like those shown in movies and science fiction, 

can be deceived by phoney resources. The Hassassin in Dan Brown's novel "Angels & 

Demons" chopped off Leonardo's eye to steal the antimatter that was locked behind a 

door with retina scanners [3-4]. Retinal fingerprints are unique to each individual, yet 

hackers can still find a method to get around them. The amount of protection provided 

by various biometric features also varies. It is more difficult to deceive the finger-vein 

based biometric verification system that the work is discussing today since it only 

recognizes the unique patterns of finger-veins beneath the skin of the live individual 

[5-6]. 
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Key Points in Finger Vein and Research Statement 

Finger-vein data is gathered with the use of specialized capturing equipment. Near-

infrared light, a lens, a light filter, and picture capturing technology make up the bulk 

of this capture apparatus. Finger veins are invisible to the naked eye because they are 

hidden beneath the surface of the skin. Near-infrared light, which may penetrate 

through human tissue, is used in this gadget [7-8]. Near-infrared light is also blocked 

by pigments like hemoglobin and melanin [9]. 

 

Fig. 2. Finger Vein Data Capturing 

Finger vein biometrics uses a person's individual vein patterns to determine their 

identity. Biometrics derived from the blood vessels beneath the skin is also known as 

vascular biometrics. Using near-infrared light or visible light causes haemoglobin — 

the iron-containing protein all have in our blood — to change colour. This means that 

the reader is able to scan the vein patterns of the individual user. In the cloud, the vein 

pattern is kept in an encrypted digital format [10]. 

 

A near-infrared reader device has been in use for more than a decade for access 

control systems (people entering a building) and ATMs (people withdrawing money). 

To identify people on internet services, finger vein biometrics proved its versatility 

when the world became more connected than it is today [11]. 

 

Finger vein biometrics can be used as a primary or a secondary method of authen-

tication for internet services. This is an example of multi-factor authentication (MFA), 

which involves two factors: a password or social media login (the first factor), and a 

finger vein authentication (the second factor) [12-14]. 
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Table 1.  Modalities with Biometrics 

Biometrics Long-term 

Stability 

Data 

Size 

Cost Accu-

racy 

Security 

Level 

Finger 

Vein 

High Medi-

um 

High High High 

Fingerprint Low Small Low Medi-

um 

Low 

Face Low Large High Low Low 

Iris Medium Large High High Medium 

Voice Low Small Me-

dium 

Low Low 

Hand Ge-

ometry 

Low Large High Low Low 

2 Research Aspects and Methodology: 

To recognize photos of 10 handwritten digits, the earliest neural networks LeNet 

were used, but nowadays, convolutional neural networks (CNNs) are widely re-

nowned for their ability to categorize 1000 images in the ImageNet database. Conven-

tional computer vision algorithms are often outperformed by CNNs because they are 

excellent at automatically extracting characteristics from pictures [15]. 

Consider finger-vein identification as an image classification issue. The use of 

CNNs to solve the finger-vein identification problem must be intriguing! To meet the 

demands of biometric authentication systems, what kind of tests should conduct? It is 

common practice to first extract features, and then utilize that information to deter-

mine the distance between them. The distribution of feature distances is used to estab-

lish a threshold. If the gap between the two traits is more than a certain threshold, they 

are not considered to be the work of the same author. As long as the gap between 

these two traits is less than the threshold, they are classified as belonging to the same 

individual [16-20]. 
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Fig. 3. Interior Analytics on Finger Veins 

Finger-vein databases are available from a number of research institutions. 

SDUMLA-HMT has provided us with the finger-vein dataset that is utilised. 

 



Wasit Journal of Computer and Mathematic Science Vol. (1) No. (2) (2022) 

6 

 

 

Fig. 4. Analytics Patterns and Methodology. 

Here would like to thank Shandong University's MLA Lab for creating the 

SDUMLA-HMT Database for the work [37]. 106 persons had their finger-vein pic-

tures recorded in this collection. Index, middle and ring fingers of both hands were 

snatched by the thugs. There are six images on each finger. The total number of pho-

tos is 3,816. Images are in the "bmp" format and have a resolution of 320x240 pixels. 

Image capture includes not only a person's finger, but also the background, which 

is often a camera. In order to preserve the finger portion of the image and eliminate 

the backdrop, it is necessary to extract ROI. It's necessary to determine the ROI's 

upper and lower bounds [21-22]. 

Finger-vein Detection using Transfer Learning: 

Large datasets need the use of CNN models with a large number of parameters. 

Complex CNN models need a long time and a lot of resources to train from the be-

ginning. To begin training from scratch in most circumstances, there is not enough 

data. Another factor to consider is 'overfitting. Insufficient data and a sophisticated 

model both increase the risk of model overfitting [23, 24]. 
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Fig. 5. Architecture of Deep Learning Model for Finger Vein Recognition. 

This challenge can be solved with the help of transfer learning [25-26]. The goal of 

Transfer Learning is to use an existing model (one that has been pre-trained on a sig-

nificant quantity of data) in a new context. Using a model pre-trained on a big dataset 

of cats and dogs, that can categorize elephants and monkeys or cartoon cats and dogs, 

for example. 

A pre-trained model may not perform as well when applied to other domains or 

tasks because it was trained without input from the original one. There are often two 

options available to us. It's possible to think of the pre-trained CNN as an extractor of 

features. Extracted features can be used as input for a linear classifier. The fine-tuning 

approach, on the other hand, is frequently used to fine-tune certain high-level layers 

[27-33]. The early layers of features are more general in nature. However, the more 

detailed information from the original datasets may be found in the following layers. 

It's possible that freezing the earliest layers may yield characteristics that can be ap-

plied to a wide range of jobs. The work may produce even more specific characteris-

tics in our datasets by fine-tuning the next layers [34-40]. 

3 Results and Outcomes 

In our investigation, we used two alternative models. In a multi-class classification 

model, the first model is used to identify the second model is a binary classification 

model used to verify the results The binary classification model uses photographs of 

differences as inputs. Both models have been fine-tuned using a pre-trained VGG-16 

model. In these models, ROIs are not preprocessed. Experiments using ROI data 

models were also conducted, however the results were not as anticipated. Low-quality 

datasets and unconfirmed image quality make it impossible to reliably classify clas-

ses. 
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Model Type    Achieved Accuracy 

Levels 

Multi-Class Classification   98.12 % 

Binary Classification    97.51 % 

The projected approach with multi-class classification is quite effective and giving 

better results as compared to the classical binary classification. 

 

 

Fig. 6. Performance Evaluation of the Projected Approach. 

 

A model that uses Euclidean distance as the distance between features will provide 

results that are difficult to explain. Differential images of the same and dissimilar 

classes, as well as interclass and intraclass distances, are employed in this study. How 

to describe the distance between two images in simple terms might be a challenge. It's 

helpful to take photos of the differences between two photographs so you can see just 

how big the disparity is. Using the Euclidean distance between feature sites as a 

measurement is unnecessary in this scenario. So, in the binary classification problem, 

it is possible to calculate FAR and FRR with relative ease According to how many 

samples match, FRR (false negative) and FAR (false positive) are defined. The FAR 

and FRR were calculated based on the forecast's probability. A very low error rate 

(ERR). 

Deep learning, as all know, is data-driven. The quality of the data is critical to the 

success of an experiment. The results are encouraging, despite the poor quality of the 

dataset utilised. Paper-referenced findings were not met by either the identification or 

verification models' final outcomes. When compared to other models, deep learning 

approaches are easier to apply and do not need extensive feature handling and engi-

neering. According to some previous research, still have room for improvement when 

it comes to pre-processing data, building models, and selecting hyper-parameters. 
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4 Conclusion 

Security has grown increasingly crucial in recent years. The Finger Vein Authenti-

cation System has attracted our interest due to its robustness, consistency, and high 

level of performance. Biometrics, such as fingerprint and iris biometrics, have a lower 

level of reliability. Finger vein authentication removes the possibility of tampering 

since it relies on the fact that each person's veins are distinct, even if they are identical 

twins, and reside beneath the skin their whole lives. In recent years, a number of deep 

learning algorithms have greatly increased the ability to recognize finger vein pat-

terns. Finger vein authentication and the deep learning approaches used to build the 

Finger Vein Recognition system are the major objectives of this manuscript. 
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Abstract—Topic of exhaustive study for about past decades has been carried out 

in machine imitation of human reading. a small number of investigates have been 

accepted on the detection of cursive font writing like Arabic texts for its individual 

challenge and difficulty .In this work, a novel technique for automatic Arabic font 

recognition is proposed to demonstrate an suitable recognition rate for multi fonts 

styles and multi sizes of Arabic word images.The scheme can be classified into a 

number of steps. First, segmenting Arabic line into words depending on the vertical 

projection and dynamic threshold then we implicated  each  Arabic word as a class 

by ignoring segmenting the word into characters .Second ,normalizing step, the size 

of Arabic word images varies from each other .The system converts  the images that 

contribution into a new size that  is divisible by "N" without remainder, to decrease 

the difficulty of feature extraction and recognition of  the system that may allow im-

ages from different resources, Third,  feature extraction step which is based on ap-

ply the ratio of vertical sliding strips as a features. Finally, multi class support vec-

tor machine (one versus one technique)is used as a classifier .This method was es-

timated on off line printed fonts, five Arabic fonts, (Andalus, Arial, Simplified Ara-

bic, Tahoma and Traditional Arabic) were used and the average  recognition rate of 

all fonts was 95.744%. 
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projection profile, horizontal projection profile 

1 Introduction  

Arabic text recognition is an important and demanding task not only for those who 

speak Arabic but also for non-Arabic national such as Persian and Urdu that use Arabic 

characters in his language. The most important characteristics of Arabic language can be 

summarized (Fig.1). 

 

Fig. 1. Characteristics of Arabic text. (1) Direction of Arabic writing from “right” to “left”. (2) 

Some characters are not connectable from the left side with the succeeding character. (3) A 

word consisting of six characters. (4) A word consisting of two separate characters. (5) A 

word consisting of the same number of characters but the word have different size (6) The 

same character with different shapes depends on its position in the word.(7) Different char-

acters with different sizes. (8) Different characters with a same numbers of dots but differ-

ent position upper and lower the base line. (9) Different characters withwith a different 

number of dots. (10) Basie line. 

a number of associated work focus on both machine-print and handwriting, with much 

more discussion of machine-print (B. Al-Badr and S. Mahmoud, 1995 ;M.S. 

Khorsheed,2002) and hand written (Liana M. Lorigo, And Venu Govindaraju 2006), 

many methods had been created  to establish  good and useful  Arabic OCR systems. 

Some of these schemes can be briefly established as follows. 

 

(M.S, Khorsheed,2007)developed a system was based on HMM Toolkit to recognize 

multi-font  Arabic text. (Mehmmood Abdulla Abd, 2007) introduced system to recognize 

printed Arabic character recognition and utilizing  support vectors machine SVMs using 

one-against-all technique in the classification phase. (Menasri et al.,2007) extracted sev-

enty-four baseline-dependant feature vectors from the graphemes and hybrid HMM/NN 

to recognize handwritten Arabic words. 

(Husni A. et al.,2008) described system for recognition printed Arabic text by applying 

hierarchical sliding window. 

 

(Jakob Sternbya,2009) explored the application of a template matching scheme to the 

recognition of Arabic script. (Sami Ben Moussa et al.,2010) proposed method to recog-
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nize Arabic font, using global texture analysis  based on fractal geometry. (Morteza 

Zahedi,2011) has proposed a new method for Farsi/Arabic automatic font recognition. 

(khalifa and yang bing Ru,2011) have computed the Euclidean distance between pairs of 

objects in n-by-m data matrix X based on the point 's operator of extrema and classify 

printed and handwritten Arabic words using one against one class SVM. 

The intention of this paper aimed to examination problem of automatic recognition Ar-

abic script. Scheming and applying a recognition method of printed Arabic text to answer 

these issues.  

2 ARABIC TEXT SEGMENTATION 

Most of the Eliminating unnecessary area: generally there are various useless regions 

which have no contribution to the recognition. Here, in this section talks about the elimi-

nating unnecessary margin empty region by clipping the word image to get the regains 

which just consist of the text, line and word. 

The image transformed into binary format (0,1) throughout white text with black back-

ground, then the row and column scan statistical analysis was done to count the numbers 

of white pixels showed in horizontal and vertical directions, in that order. To remove the 

top, bottom, left and right boundary in the same way. Here we use the actual boundaries 

of the word  to extract the crop image (Fig. 2). 

 

 

Fig. 2. Crop Arabic word (a) to get new image (b) by removing unwanted region using vertical and 

horizontal projection profile 

Word Segmentation: Because 1)Arabic characters in a word/sub-word are associated at 

one side (right side) and 2)Arabic words might be consisted of one or more sub-words, 

there is a distance between two sub-words, in addition to between two words. on the other 

hand, the space between two words is typically larger than the space between two sub-

words. 

Thus, segmenting line into words depends on the technique of vertical projection shape 

that computes the number of the black pixels using the Eq. of the vector Vproj given by:  

vproj[i] = ∑ I[i, j]

m−1

i=0
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where I is a given image text, m is number of rows in a given text.  

If the summation of Vprojis equal to zero, that means the gap has started, and we need to 

calculate the distance of each gap to find the value of the dynamic threshold (T) depend-

ing on the mean equation. If the number of zeros is > T that means the line does not seg-

ment, or else segments it. The example of product of this method shows in (Fig. 3).

 

Fig. 3.   Example of applying Vertical Projection to segment Arabic line to the words 

3 FEATURE EXTRACTION 

Printed word has a geometrical shape and this shape is regular whatever the size of the 

word is modify, in this case, we employed this feature to extract a set of statistical fea-

tures to get a unique representation to the printed Arabic words images in different sizes. 

The direction of the Arabic word from right to left is believed as the feature extraction 

axis. As shown in these steps. 

Step1:   Pre-processing. A word image is binarazed into white with black background to 

get a binarazation image and then clip the word image by remove unnecessary area. 

Step2:  Size of Arabic word images are differ from each other. In order to decrease the 

difficulty of feature extraction and recognition procedure of this system by accepting 

image file from different sources, the system implements the action of normalization 

through transforms different sized image file into a new size by making the width of the 

image file is divisible by "N" without remainder, where N in this research = 72  then the 

size of Arabic word image  is (LW x WW), where LW is the length of the word image 

and the WW is the width of the word image. 

Step 3:  Divided the new image into 72 vertical strips. The length of each slide strip win-

dow is the same as the word length(LW) and the width of the slide strip window is 

(WW/72).   

Step 4: Then extract feature from each strip by using the summation of all pixels in each 

strip as element in one vector named B. 

Depend on technique of vertical projection profile, by calculating the number of the 

white pixels in each strips using the equation of the vector Vproj as shown in this equa-

tion. 

𝐯𝐩𝐫𝐨𝐣[𝐢] = ∑ 𝐈[𝐢, 𝐣]

𝐦−𝟏

𝐢=𝟎
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Where m= number of the rows in the strip 

Step 5: From vector B we generate a new vector named C that has 36 elements by com-

pute the ratio between the contiguous elements of vector B after added 2 to the numerator 

and 1 to the denominator to avoid divide by zero as shown in these equations: 

 C(1) = ((B(1)+2) / (B(2)+1)) * 10  ,  C(2) = ((B(3)+2) / (B(4)+1)) * 10  

             C(3) = ((B(5)+2) / (B(6)+1)) * 10 … C(36) = ((B(71)+2) / (B(72)+1)) * 10  

4 SUPPORT VECTOR MACHINE 

The SVMs consider as a type of hyperplane classifier, it developed based on the statis-

tical learning theory of (V. Vapnik.,1995) , This classifier associated to the error bound of 

generalization, since it focus on maximizing a geometric margin of hyperplane. The study 

of SVMs has reported from the mid-1990s, 

It wins popularity due to many good features and definitely performance in the fields 

of nonlinear and high dimensional pattern recognition, but the application of SVMs relat-

ed to pattern recognition has still continues.SVM classifier in general is a binary (two-

class) linear classifier and use kernel function  to represents the inner product of two vec-

tors in linear/nonlinear feature space. And it is not straightforward to turn them into multi-

class (N-class) recognition systems. There have been many references for describing the 

details of SVMs, like N. (Cristianini and J. Shawe-Taylor,2000; B. Sch¨olkopf and A. J. 

Smola,2002; Christopher J.C., 2005). 

The implementation of SVM in the proposed system: The features of off-line Arabic 

word has been extracted from a given word images as discussed previously. The feature 

vector has feed as a row in one  matrix to create one model for all words, that have all 

feature vectors together and each one of these vectors have been labeled to distinguish 

one class from the others . In general, classification task usually involves training and 

testing sets (Fig.4) which consist of data (class labels and a feature vectors).The task of 

recognition allocates each word (class) within predefined matrix that has all feature vec-

tors. In this work an optimized support vector machines (SVMs) to classify the input 

Arabic words by applying one-against-one (1-v-1) SVMs technique. 
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Fig. 4.  The main architecture of  implementation SVM in the proposed systems 

5 EXPERIMENT RESULTS AND ANALYSIS 

Experimental datasets: The proposed system has been tested on the printed Arabic text 

using public dataset (PATS-A01) . We prepare five experimental datasets for analysis 

based on this database. This dataset named printed Arabic Text Set A01 (PATS-A01) 

created by(Husni A. et al.,2008). It consists 2766 text line images the line images are 

available in eight fonts: (Arial, Tahoma, Akhbar, Thuluth, Naskh, Simplified Arabic, 

Andalus, and Traditional Arabic).  

Results and analysis of word segmentation: This section evaluates the methods for 

segmenting lines into words as previously described. The  lines that are used in this ex-

periment have been selected randomly from PATS-A01 dataset, each line is typed in five 

Arabic fonts(Andalus, Arial, Simplified Arabic, Tahoma and Traditional Arabic). It 

works well on all fonts with a segmentation rate ofabout 100%. (Table 1) shows segmen-

tation rates and (Table 2) shows some examples of successful segmentation results. 

Table 1.  Segmentation rates  for each fonts 

Segmentation rate for five fonts from PATS-A01 da-

taset 

Font name 

100 % Andalus 

100 % Arial 

100 % Simplified Arabic 
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Table 2.  Shows some examples of successful segmentation results 

 

Results and analysis of word recognition: The proposed recognition method has been 

evaluated on printed Arabic words, five different Arabic fonts were used (Andalus, Arial, 

Simplified Arabic, Tahoma and Traditional Arabic).  

6 Test the performance of all features on each font separately with 

different size: 

This experiment has been applied on (dataset 1, dataset 2 , dataset 3, dataset 4, dataset 

5) respectively, Totally each one of the dataset has 396 Arabic words and these words are 

divided into 66 classes of Arabic words. And the samples in each dataset are typed in one 

of five different fonts (Andalus, Arial, Simplified Arabic, Tahoma and Traditional Ara-

bic) correspondingly.  Therefore to distinguish between these words, the size of each 

Arabic word  has been changed. We will simply resize the model size in each class ac-

cording to original size as follows: 

Model1 = original image size 

98.485 % Tahoma 

96.97 % Traditional Arabic 

99.091 % Average 



Wasit Journal of Computer and Mathematic Science Vol. (1) No. (2) (2022) 

19 

 

Model2 = 1.2*(original image size)  

Model3 = 1.4*(original image size) 

Model4 = 1.6*(original image size) 

Table 3.  The recognition rate (%) of each fonts 

 

Model5 = 1.8*(original image size) 

Model6 = 2*(original image size) 

When the words carried to the system, 36 features extract from each word. It was able 

to be recognized from each dataset( 379 ,380 , 381 ,378 ,378 and 379 ) approximate  

models and  produced  recognition rate (95.799%,95.845%,96.183%,95.356% and 

95.539% ) correspondingly. See (Table 3). 

7 CONCLUSION 

Due to specific characteristics of Arabic scripts, such as cursiveness, recognition of 

Arabic words is considerable more complex than the recognition of English words.  

We have proposed a novel scheme for automatic Arabic font recognition which is 

based on concern vertical sliding strips summation of the words images, then the ratio 

between two adjacent slides is considered as a feature, this feature feed to the words mod-

els which consist of word class labels and word class features. at last, the words models 

fetched to the classification stage using multi class support vector machine as a classifier 

by using 1-v-1 technique.   

When the words input to the system, 36 features extracted from each word and the av-

erage recognition rate of all fonts was 95.744%. 

The results obtained are extremely hopeful and have shown that the system work well 

and fast on off printed Arabic words and can be employ this system in the future to hand-

written Arabic words. Also can be test the system on large scale date set .      

Approximate 

unrecognized 

samples 

Approximate 

recognized 

samples 

Recognition 

rate % 

The font name 

that used in the 

dataset Dataset name 

17 379 95.799 Andalus Dataset1 

16 380 95.845 Arial Dataset 2 

15 381 96.183 Simplified Arabic Dataset 3 

18 378 95.356 Tahoma Dataset 4 

18 378 95.539 Traditional Arabic Dataset 5 

17 379 95.7444 The Average 
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Abstract— Abstract Blocks and chains are the building blocks of the block-

chain, which is a community network. Blocks and chains are two terms used to 

describe collections of data information. The most fundamental need for a 

blockchain is that these postings be connected by cryptography, which is the 

case here. Cryptography. the entries in each block are added to as the list grows. 

Although the concept of blockchain cryptography is difficult, we have made it 

easier for you to understand. Asymmetric-key cryptography and hash functions 

are used in blockchains. Hash functions provide participants with a complete 

image of the internet. The SHA-256 hashing algorithm is often used in block-

chains. In Bitcoin, where addresses are tracked by public-private key pairs, 

blockchains are often used. The public key in blockchain cryptography is a per-

son's address. All participants have access to the participant's public key. The 

private key is used to get access to the address database and to authorise activi-

ties using the address. To ensure the integrity of the blockchain ledger, encryp-

tion plays a key role. Each event on the blockchain is recorded using encrypted 

data. As long as each user has access to their cryptographic keys, they may buy 

or trade cryptocurrencies. The root hashes of all transactions are stored in 

blockchains via cryptographic hashing. If somebody attempts to tamper with 

any data upon that blockchain, the main hash will have a completely new hash. 

Root hash comparisons may be performed on any other system to check wheth-

er the data is safe. 

Keywords—Blockchain, Dynamic Cryptography, Security in Blockchain 

1 Introduction 

As a leading technology, blockchain is usually linked with high levels of security 

and anonymity across a wide range of applications. Blockchain technology is now 

being used in a wide range of social and business contexts, not only in the cryptocur-

rency industry. E-governance, social networking and e-commerce are just a few of the 

many sub-segments that fall under this umbrella [1]. 
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Secured Digital Ledgers with Cryptography in Blockchain 

Digital ledgers are stored on a high-security, high-performance system known as a 

"blockchain." Using a digital ledger eliminates the need for intermediaries or adminis-

trators to manipulate the records [2]. All operations on the bitcoin blockchain are 

finalised using a variety of protocols and processes that cannot be hacked by external 

parties. [3]. 

 

Key Implementations of Blockchain Technology 

• Entertainment 

o Spotify  

o Guts 

o B2Expand 

o KickCity 

o Veredictum 

 

• Social Networks 

o Matchpool 

o MeWe 

o Minds 

o Steepshot 

o Mastodon 

o DTube 

o Sola 

 

• Retail 

o Opskins 

o Loyyal 

o Warranteer 

o Every.Shop 

o Blockpoint 

o Fluz Fluz 

o Spl.yt 

o Shopin 

o Ecoinmerce.io 

o Portion 

o Buying.com 

 

• Cryptocurrency 

o Litecoin 

o Ripple 
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o Primecoin 

o Bitcoin 

o Namecoin 

o Dogecoin 

o Nxt 

o Ethereum 

2 Real Problem and Key Statement 

In traditional centralized environment, there is less security because of weak hash-

ing and needs dynamic hash with cryptography as in Blockchain. Transactions cannot 

be reversed because cryptographic hashing is irreversible. This assures that all users 

can rely on the digital ledger's correctness and that they are protected from any antag-

onistic conduct [4, 5]. 

To understand blockchain, one must understand cryptography. It is possible to en-

crypt, transmit bitcoin securely, and record transactions over time thanks to cryptog-

raphy's features. Without a central authority, we may trade bitcoin safely and assure 

that blocks will continue to be inserted into the chain without restriction [6]. 

Cryptographic hashing enables blockchains to store vast quantities of transactions 

while protecting them from hackers. It provides a secure, verifiable, and scalable 

method for conducting online transactions. Blockchain is genuinely unstoppable be-

cause of cryptography [7, 8]. 

2.1 Public and Private Blockchain with Security and Cryptography 

The data structure of blockchain technology is automatically safe. Encryption and 

decentralisation are the foundations upon which it is based to ensure transactional 

trust. In most blockchains and DLT, each block of data contains a single transaction 

or a collection of related transactions. It is extremely impossible to tamper with a 

cryptographic chain since each new block is irrevocably tied to the blocks that came 

before it. To ensure that each transaction contained in a block is correct, each transac-

tion must be verified and agreed upon by the consensus process [9, 10]. 

Blockchain technology is able to transform society since it relies on the participa-

tion of all users in a network [11, 12]. There is no single point of failure because eve-

rything is documented. But when it comes to digital money security, blockchain tech-

nology has a few advantages over the alternatives. Participation and data access might 

differ amongst blockchain networks. Public and private networks are the two most 

common varieties. 
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Fig. 1. Dynamic Cryptography Based Security in Blockchain 

A common feature of public blockchain networks is the ability for anybody to join 

while yet maintaining their anonymity. Using computers linked to the internet, a pub-

lic blockchain can verify transactions [13] and establish consensus. Public block-

chains, like as Bitcoin, use "bitcoin mining" as a means of bringing parties together. 

The "miners" on the bitcoin network work cooperatively to solve a complex crypto-

graphic challenge in order to validate a transaction. Other than public keys, this type 

of network has few means of identity and access control. 

 

In private blockchains, where only well-known companies are allowed to partici-

pate, identity is employed to authenticate membership and access credentials [14, 15, 

16]. The organisations' combined efforts establish an exclusive "business network." 

Consensus on a private blockchain in a permissioned network is achieved by "selec-

tive endorsement." 

Before choosing a network for any blockchain application, think about the re-

quirements of your firm. It is better for requirements to use permissioned and private 

networks, as they may be more tightly controlled [17, 18]. Decentralization and dis-

persion can take place more easily in permissionless networks. Table 1 is the key 

tools for secured blockchain 

Table 1.  Key Tools for Secured Blockchain Environment 

URL Framework / Tool 

https://etherlime.readthedocs.io/en/latest/ Etherlime 
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https://ethfiddle.com/ EthFiddle 

https://embark.status.im/ Embark 

http://populus.readthedocs.io/en/latest/ Populus 

http://remix.ethereum.org/ Remix IDE 

https://truffleframework.com/ Truffle 

https://geth.ethereum.org/ https://github.com/ethereum/go-ethereum/wiki/geth Go Ethereum / Geth 

https://consensys.net/diligence/mythril.html MyThril 

https://github.com/cryppadotta/dotta-license/tree/master/dot-abi-cli Dot-Abi-cli 

https://github.com/ethereum/pyethereum PyEthereum 

https://nethereum.com/ Nethereum 

https://github.com/consensys/cava Cava 

http://www.liquidity-lang.org/ Liquidity 

https://infura.io/ Infura 

https://lamden.io/ Lamden 

http://solidity.readthedocs.io/en/v0.4.24/ Solidity 

https://coq.inria.fr/ Coq 

3 Key Objective and Related Aspects 

The unique verification process of Blockchain is one of its outstanding features. By 

removing the need for human verification, Blockchain promises to increase accuracy. 

Third-party verification costs have also been reduced as a result of the use of the 

blockchain technology [19]. Because of its decentralised design, hackers and attackers 

have had a tough time tampering with data. Security, privacy, and efficiency are just a 

few of the benefits of using Blockchain to do business. Since it is a transparent tech-

nology, it provides complete transparency to its users. As a result, inhabitants of 

countries with unsafe or undeveloped governments can use Blockchain as a financial 

option as well as a way to protect their personal information [20]. It's still early days 

for blockchain, but there are countless chances for professionals to study and grow 

their careers in this industry, including cryptography in blockchain for sure. 

There are blocks of various data items and documents in the blockchain network. It 

is impossible to alter a block after it has been added to the blockchain. In this context, 

"immutable" refers to the fact that it cannot be changed or tampered with. Conse-

quently, it creates a secure chain of blocks that eliminates the risk of data manipula-

tion or leaking [21-24]. 

The Genesis Block is the initial entry in the chain of the network and is where the 

blockchain begins transactions. It gets more difficult to decipher the prior states be-

cause of the various encryptions that have been added to each new block that is in-

serted. Table 2 show the literature review. 

Table 2.  Literature Review 

Authors Key Work 

G. Zyskind, A.S. Pentland [25]  Using Secured Cryptography based blockchain, data ex-
changes between users and apps may be protected and 

undamaged. Network nodes reward trustworthy nodes for 

their degree of trust rather than proof-of-work. 
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Authors Key Work 

B. Benshoof, A. Rosen, A.G. Bourgeois, R
.W. Harrison [26] 

  

Cryptography Hash with Dynamic Security and "D3NS" 
with blockchain-based solution for securing DNS. New 

DNS proposed that is backwards compatible. 

A. Ouaddah, A. Abou Elkalam, A. Ait 

Ouahman [27]  

PoC Based Implementation 

      M. Ali, et al. [28]  Dynamic Cryptography based application., "BlockStack" is 

a test project for immutable data naming and storage. 

Recognizing that the Namecoin blockchain does not pro-
vide the same level of security and trustworthiness as the 

Bitcoin blockchain. 

K. Christidis, M. Devetsikiotis [29] IoT devices with implementation patterns with the use of 

blockchain technology are examined in detail.  

 

4 Methodology 

• Using Python based Programming Platform for Cryptography in Blockchain De-

velopment 

• Development, Generation and Deployment of Dynamic Hash 

• Using Dynamic Hash in Blockchain Environment 

Python is the programming language of choice for high-performance computations 

in practically every field. The tools and frameworks provided by Python may be used 

to construct blockchain applications, including those that are decentralized. 

 

$ pip install <packagename> 

 

MyDrive:\PythonInstallationDirectory>python -m pip in-

stall <packagename> 

The incorporation of dynamic cryptographic and encryption into the blockchain 

technology is critical and heavily relied upon. Installing the hashlib library is as sim-

ple as following the instructions found in the previous paragraph. 

 

To ensure that all transactions and records are safe, a secure blockchain generates 

hash values for each transaction and record. It is possible to produce the dynamic hash 

value needed to build a blockchain from a collection of individual transactions by 

running the following script, blockchainhash.py. 

 

ImportLibrary datetime as date 

ImportLibrary hashlibrary as hashlibraryer 

ClassDeclaration BlockchainId: 
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 def __init__(self, myindex, ts, myBlock-

chainIdchain, backhashlibrary): 

 self.myindex = myindex 

 self.ts = ts 

 self.myBlockchainIdchain = myBlockchainId-

chain 

 self.backhashlibrary = backhashlibrary 

 self.hashlibrary = self.hashlibraryop() 

  

 def hashlibraryop(self): 

 shahashlibrary = hashlibraryer.sha256() 

 shahashlibrary.update(str(self.myindex) + 

str(self.ts) + str(self.myBlockchainIdchain) + 

str(self.backhashlibrary)) 

 return shahashlibrary.hexdigest() 

def initializeBlockchainId(): 

 return BlockchainId(0, date.datetime.now(), 

"InitializeBlockchainId BlockchainId", "0") 

def next_BlockchainId(last_BlockchainId): 

 this_myindex = last_BlockchainId.myindex + 1 

 this_ts = date.datetime.now() 

 this_myBlockchainIdchain = "BlockchainId" + 

str(this_myindex) 

 this_hashlibrary = 

last_BlockchainId.hashlibrary 

 return BlockchainId(this_myindex, this_ts, 

this_myBlockchainIdchain, this_hashlibrary) 

BlockchainIdchain = [initializeBlockchainId()] 

back_BlockchainId = BlockchainIdchain[0] 

maxBlockchainIds = 20 

for i in range(0, maxBlockchainIds): 

 BlockchainId_to_add = 

next_BlockchainId(back_BlockchainId) 

 BlockchainIdchain.append(BlockchainId_to_add) 

 back_BlockchainId = BlockchainId_to_add 

 print "BlockchainId #{} inserted in Block-

chainId-

chain".format(BlockchainId_to_add.myindex) 

 print "Hashlibrary Value: 

{}\n".format(BlockchainId_to_add.hashlibrary) 
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5 Result 

The result of executing code is a different hash value and a better degree of securi-

ty employing cryptography techniques. Attempts to hack or sniff the transaction will 

be nearly impossible if these hash values are used. Figure 2 shows the result of se-

cured hash generation in blockchain. 

 

Fig. 2. Secured Hash Generation in Blockchain 

6 Deployment of Network Based Distributed Blockchains 

Block-based hash functions, like those in preceding examples, are implemented on 

a standalone system. The real blockchain must be dispersed in order for various users 

to start their own transactions and blocks. Python has a variety of frameworks for 

distributed and web-based solutions. 

 

Thus, the digital currency or transaction is carried out securely. B's records need to 

reflect the value of a file or digital currency sent by A, for example, if A's records 

need to be wiped and mirrored in B's records. Traditionally, the Bank has acted as a 

go-between in this transaction. On the blockchain, transactions are validated in real 

time by specialised algorithms, cutting out the middlemen. Currency will depreciate 

regardless of the kind of currency if the sender does not erase the transaction from 

their account. Fig. 3. Shows blockchain initialization. 

CryptoMiner_address = "***************************" 

mySecuredBlockchain = [] 

mySecuredBlock-

chain.append(Creation_genesis_SecuredBlock()) 

ThisClass_Secured_Nodes_SecuredTransactions = [] 

peer_Secured_Nodes = [] 

SecuredMining = True 
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@Secured_Node.route('/mySecuredBlockchain', meth-

ods=['POST']) 

def SecuredTransaction(): 

 new_mySecuredBlockchain = request.get_json() 

 This-

Class_Secured_Nodes_SecuredTransactions.append(new_mySecu

redBlockchain) 

 Display "New SecuredTransaction" 

 Display "Sender: 

{}".format(new_mySecuredBlockchain['from'].encode('ascii'

,'replace')) 

 Display "Receiver: 

{}".format(new_mySecuredBlockchain['to'].encode('ascii','

replace')) 

 Display "Amount: 

{}\n".format(new_mySecuredBlockchain['amount']) 

 return "SecuredTransaction Successful\n" 

@Secured_Node.route('/SecuredBlocks', methods=['GET']) 

def get_SecuredBlocks(): 

 chain_to_send = mySecuredBlockchain 

 for i in range(len(chain_to_send)): 

 SecuredBlock = chain_to_send[i] 

 SecuredBlock_idx = str(SecuredBlock.idx) 

 SecuredBlock_timestamp = str(SecuredBlock.timestamp) 

 SecuredBlock_data = str(SecuredBlock.data) 

 SecuredBlock_hash = SecuredBlock.hash 

 chain_to_send[i] = { 

 "idx": SecuredBlock_idx, 

 "timestamp": SecuredBlock_timestamp, 

 "data": SecuredBlock_data, 

 "hash": SecuredBlock_hash 

 } 

 

Fig. 3. Blockchain Initialization 
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$ curl "http://localhost:5000/blockchain" -d 

"{\"from\":\"ss\",\"to\":\"fsd\", \"amount\":3}" -H "Con-

tent-Type:application/json" 

 

 

Fig. 4.  Curl based Cryptography Hash Initialization 

Proof-of-work (PoW) is a critical algorithm in blockchain programming. It is used 

to verify and confirm transactions in order to add new blocks to the blockchain. The 

key consensus algorithm for verifying and authenticating transactions is referred to as 

such. In a blockchain network, there are a variety of miners that work together to 

verify and finalise transactions. The miners are compensated with digital crypto-

currencies as compensation for their successful validations. Figure 4-6 shows the 

execution process. 

 

Fig. 5.  Secured Transactions 
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Fig. 6.  Secured Transaction with Cryptography in Users 

With the code execution and overall implementation described, there will be no ef-

fort at hacking because all data and transactions can be inspected to ensure complete 

transparency. It is possible to record and commit the integrity of transactions by utilis-

ing Proof of Work (PoW). 

7 Conclusion 

Currently, governments and corporations alike are working to protect their applica-

tions by implementing blockchain technology. Secure Proof of Work (PoW) algo-

rithms must be linked to these integrations in order to ensure implementation privacy 

and integrity. Blockchain technology may be utilised by researchers and forensic 

scientists to accurately anticipate the identities of certain individuals, which can be 

employed in criminal forensic and law enforcement settings. Software (Electrum, 

Bitcoin core) and perhaps a specific hardware device (e.g. Ledger) can be used to 

store transaction data and the user's private and public keys (e.g. private/public key 

pair). It's critical to understand that these wallets do not hold any actual money (e.g. 

Bitcoin, Ethereum). There is nothing more to these wallets than a location to store 

one's private keys and transaction balance. A blockchain wallet is also required to 

conduct transactions with these other users. To put it another way, the blockchain 

holds all of the true information/data and cash in blocks, not a wallet. It's akin to a 

digital signature, which serves as a kind of identification for both the recipient and the 

whole blockchain network. A particular method must be used to combine your data 

and your cryptographic signature to establish a unique digital signature each time you 

begin a transaction with another node. As a result, you may rest assured that both your 

node and also the data it transmits are genuine. 
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Abstract—Let 𝐴 be an associative algebra over a field 𝔽 of any characteris-

tic with involution ∗  and let 𝐾 = 𝑠𝑘𝑒𝑤(𝐴) = {𝑎 ∈ 𝐴|𝑎∗ = −𝑎}  be its corre-

sponding sub-algebra under the Lie product [𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝐴. If 

𝐴 = 𝐸𝑛𝑑𝑉 for some finite dimensional vector space over 𝔽 and ∗ is an adjoint 

involution with a symmetric non-alternating bilinear form on 𝑉, then ∗ is said to 

be orthogonal. In this paper, Jordan-Lie inner ideals of the orthogonal Lie alge-

bras were defined, considered, studied, and classified. Some examples and re-

sults were provided. It is proved that every Jordan-Lie inner ideals of the or-

thogonal Lie algebras is either 𝐵 = 𝑒𝐾𝑒∗ or 𝐵 is a type one point space.  

Keywords—paper publishing, journals, styles, how-to 

1 Introduction  

Let 𝐴  be a finite dimensional associative algebra over a field 𝔽 . Recall that 𝐴 

becomes a Lie algebra 𝐴(−) under the Lie bracket defined by [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 for all 

𝑥, 𝑦 ∈ 𝐴. Suppose that 𝐴 has an involution ∗. Recall that an involution is a linear 

transformation ∗ of an algebra 𝐴 satisfying (𝑎∗)∗ = 𝑎 and (𝑎𝑏)∗ = 𝑏∗𝑎∗ for all 𝑎, 𝑏 ∈
𝐴. We denote by 𝐾 = s𝑘𝑒𝑤(𝐴) = {𝑎∗ = −𝑎|𝑎 ∈ 𝐴} to be the vector space of the 

skew symmetric elements of 𝐴. Recall that 𝐾 is a Lie algebra with the Lie bracket 

defined by [𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝐾. If the characteristic of 𝔽 is non-equal 2, 

then 𝐾 can be represented in the form: 

𝑲 = 𝐬𝒌𝒆𝒘(𝑨,∗) = {𝒂 − 𝒂∗|𝒂 ∈ 𝑨}. (1.1) 

Benkart was the first to introduce an inner ideal of a Lie algebra. She defined it as a 

subspace 𝑩  of a Lie 𝑳  such that the space [𝑩, [𝑩, 𝑳]]  is a subset of 𝑩  [4]. She 

highlighted the relationship between inner ideals and an 𝐚𝒅-nilpotent elements [3]. 

Recall that an adjoint map 𝐚𝒅: 𝑳 → 𝖌𝖑(𝑳) is a representation from a Lie 𝑳 into its 

general linear algebra defined by 𝐚𝒅(𝓵) = 𝐚𝒅𝓵 , where 𝐚𝒅𝓵: 𝑳 → 𝑳  is a linear 

transformation defined by 𝐚𝒅𝓵(𝒙) = [𝓵, 𝒙] for all 𝒙 ∈ 𝑳. By restricting 𝐚𝒅-nilpotent 
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elements, one can classify non-classical from classical simple Lie algebras over 

algebraically closed fields of characteristic ≠ 𝟐, 𝟑. Therefore, inner ideals play a role 

in classifying these algebras. Commutative inner ideals have proved to be a useful 

tool for classifying both finite and infinite-dimensional simple Lie algebras. It is 

proved in [9] that inner ideals play a role similar to one-sided ideal in associative 

algebras and can be used to construct Artinian structure theory for Lie algebras. Inner 

ideals is an essential tool in the classification of Lie algebras. (see [8] and [9]). Inner 

ideals of classical type Lie sub-algebras of associative(simple) rings were studied by 

Benkart and Fernandez Lopez (see[6]) . Baranov and Shlaka [2] in 2019 classified 

Jordan-Lie inner ideals of the Lie sub-algebras of finite dimensional associative 

algebras. An inner ideal 𝑩 of 𝑨(𝒌) or 𝑲(𝒌) is said to be Jordan-Lie if 𝑩𝟐 = 𝟎. In recent 

paper, Shlaka and Mousa [11], studied Jordan-Lie inner ideals 𝑨(𝒌) in the case when 

𝑨 is simple over an algebraically closed fields of positive characteristic. Jordan-Lie 

inner ideals of the Lie algebras 𝑲(𝒌) in the case when 𝑨 is simple with the symplectic 

involution over an algebraically closed fields of positive characteristic were also been 

studied by Kareem and Shlaka in [7]. 

In this paper, we study inner ideals of the orthogonal Lie algebras. We start with 

some preliminaries in section 𝟐. Section 𝟑 is devoted to proof some results about 

Jordan-Lie inner ideals of the orthogonal Lie algebras and point space. 

2 Preliminaries  

       Throughout this paper, 𝔽  is a field (algebraically closed), 𝑝 ≥ 0  is the 

characteristic of 𝔽, 𝑉  is a vector space (finite dimensional over 𝔽), E𝑛𝑑(𝑉) is the 

endomorphism algebra, 𝔰𝔬(𝑉)  is the orthogonal Lie algebra, 𝐴  is an associative 

algebra (finite dimensional over 𝔽) with an involution ∗, 𝐾 = s𝑘𝑒𝑤(𝐴,∗) is the Lie 

subalgebra of 𝐴  defined as (1.1), 𝐿  is a Lie algebra (finite dimensional over 𝔽 ), 

ℳ𝑛(𝔽)  is the matrix algebra consisting of all 𝑛 × 𝑛 -matrices and 𝔰𝔬𝑛(𝔽)  is the 

orthogonal Lie algebra of matrix . 

 Recall that an involution ∗ of 𝐴 is a linear transformation of 𝐴 such that (𝑎∗)∗ = 𝑎 

and (𝑎𝑏)∗ = 𝑏∗𝑎∗ for any 𝑎, 𝑏 ∈ 𝐴 [10]. Note that ∗ does not required to be 𝔽-linear. 

On the other hand, it is obvious that ∗  maps the center 𝑍  into it self. Since the 

restriction of ∗ over 𝔽 is an automorphism of order less than or equal to 2, it maps 

every sub-field of 𝑍  into itself. Therefore 𝔽∗ = 𝔽. Here we have two possibilities 

which are either ∗ is 𝔽-linear or not. Thus, we have the following definition.  
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2.1 Definition [13, 7.2] An involution is said to be of the first kind in case that ∗ is 

𝔽-linear, that is the restriction of ∗ relative to 𝔽 is the identity. Otherwise, it is 

called of the second kind.  

2.2 Remark In this paper, we consider involution of the first kind only.  

2.3 Definition Let 𝑩 be a subspace of 𝐋. Then 𝐁 is said to be  

1. [4] An inner ideal if [𝐵, [𝐵, 𝐿]] ⊆ 𝐵.  

2. [4] A commutative inner ideal if 𝐵 is an inner ideal such that [𝐵, 𝐵] = 0.  

3. [2] A Jordan-Lie inner ideal (or simply, 𝐽-Lie) if 𝐿 = s𝑘𝑒𝑤(𝐴) and 𝐵 is an inner 

ideal such that 𝐵2 = 0.  

2.4 Example Consider the associative algebra 𝑨 = 𝓜𝒏(𝔽). Then {𝒆𝒊𝒋|𝟏 ≤ 𝒊, 𝒋 ≤

𝒏} form a basis of 𝑨 consisting of matrix units, where 𝒆𝒊𝒋 is the 𝒏 × 𝒏-matrix 

with the entry 𝟏 in the 𝒊𝒋th position and zero elsewhere. Thus, the Lie algebra 

 𝐾 = 𝑠𝑘𝑒𝑤(𝐴) = 𝔰𝔬2𝑛(𝔽) has the following basis {𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗|1 ≤ 𝑖, 𝑗 ≤ 𝑛}, where  

𝑎𝑖𝑗 = (𝑒𝑖𝑗 − 𝑒𝑛+𝑗,𝑛+𝑖),        𝑏𝑖𝑗 = (𝑒𝑖,𝑛+𝑗 − 𝑒𝑗,𝑛+𝑖)    and    𝑐𝑖𝑗 = (𝑒𝑛+𝑖,𝑗 − 𝑒𝑛+𝑗,𝑖). 

Then 𝐵 = 𝔽𝑎12  is 𝐽 -Lie of s𝑘𝑒𝑤(𝐴,∗) . Indeed, for any 𝑥, 𝑦 ∈ 𝐵 , we have 𝑥 =
𝛼𝑎12 = 𝛼(𝑒12 − 𝑒𝑛+2,𝑛+1), 𝑦 = 𝛽𝑎12 = 𝛽(𝑒12 − 𝑒𝑛+2,𝑛+1). Since  

𝑥. 𝑦 = 𝛼(𝑒12 − 𝑒𝑛+2,𝑛+1). 𝛽(𝑒12 − 𝑒𝑛+2,𝑛+1) = 0, 

𝐵2 = 0. It remain to show that [𝑥, [𝑦, ℓ]] ∈ 𝐵 for each ℓ ∈ 𝐾. 

 Let ℓ = ∑𝑛
𝑖,𝑗=1 𝜁𝑖𝑗𝑎𝑖𝑗 + ∑𝑛

𝑖,𝑗=1 𝜂𝑖𝑗𝑏𝑖,𝑛+𝑗 + ∑𝑛
𝑖,𝑗=1 𝛾𝑖𝑗𝑐𝑖𝑗 ∈ 𝐾. Then  

𝑥ℓ𝑦 = 𝛼(𝑒12 − 𝑒𝑛+2,𝑛+1)( ∑

𝑛

𝑖,𝑗=1

𝜁𝑖𝑗𝑎𝑖𝑗 + ∑

𝑛

𝑖,𝑗=1

𝜂𝑖𝑗𝑏𝑖𝑗 + ∑

𝑛

𝑖,𝑗=1

𝛾𝑖𝑗𝑐𝑖𝑗)𝑦 

= 𝛼 ∑

𝑛

𝑗=1

(𝜁2𝑗𝑒1𝑗 + 𝜂2𝑗𝑒1,𝑛+𝑗 − 𝜂𝑗2𝑒1,𝑛+𝑗 + 𝜁j1𝑒𝑛+2,𝑛+𝑗 − 𝛾1𝑗𝑒𝑛+2,𝑗 + 𝛾𝑗1𝑒𝑛+2,𝑗)𝑦 

= 𝛼𝛽(𝜁21𝑒12 − 𝜂22𝑒1,𝑛+1 − 𝜂22𝑒1,𝑛+1 − 𝜁21𝑒𝑛+2,𝑛+1 − 𝛾11𝑒𝑛+2,2 + 𝛾11𝑒𝑛+2,2) 

 = 𝛼𝛽𝜁21(𝑒12 − 𝑒𝑛+2,𝑛+1) = 𝛼𝛽𝜁21𝑎12 ∈ 𝔽𝑎12 = 𝐵. 

 and  

𝑦ℓ𝑥 = 𝛽(𝑒12 − 𝑒𝑛+2,𝑛+1)( ∑

𝑛

𝑖,𝑗=1

𝜁𝑖𝑗𝑎𝑖𝑗 + ∑

𝑛

𝑖,𝑗=1

𝜂𝑖𝑗𝑏𝑖𝑗 + ∑

𝑛

𝑖,𝑗=1

𝛾𝑖𝑗𝑐𝑖𝑗)𝑥 
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= 𝛽 ∑

𝑛

𝑗=1

(𝜁2𝑗𝑒1𝑗 + 𝜂2𝑗𝑒1,𝑛+𝑗 − 𝜂𝑗2𝑒1,𝑛+𝑗 + 𝜁𝑗1𝑒𝑛+2,𝑛+𝑗 − 𝛾1𝑗𝑒𝑛+2,𝑗 + 𝛾𝑗1𝑒𝑛+2,𝑗)𝑥 

= 𝛼𝛽(𝜁21𝑒12 − 𝜂22𝑒1,𝑛+1 − 𝜂22𝑒1,𝑛+1 − 𝜁21𝑒𝑛+2,𝑛+1 − 𝛾11𝑒𝑛+2,2 + 𝛾11𝑒𝑛+2,2) 

 = 𝛼𝛽𝜁21(𝑒12 − 𝑒𝑛+2,𝑛+1) = 𝛼𝛽𝜁21𝑎12 ∈ 𝔽𝑎12 = 𝐵. 

 Therefore, [𝑥, [𝑦, ℓ]] = 𝑥𝑦ℓ − 𝑥ℓ𝑦 − 𝑦ℓ𝑥 + ℓ𝑦𝑥 = −𝑥ℓ𝑦 − 𝑦ℓ𝑥 ∈ 𝐵, as required.  

 

2.5 Definition [5] A subspace 𝐏 of 𝐋 is said to be point space if [𝐏, 𝐏] = 𝟎 and 

𝐚𝐝𝐱
𝟐(𝐋) = 𝔽𝐱 for every non zero element 𝐱 ∈ 𝐏.  

Example 2.6 Let 𝐾 = 𝔰𝔬2𝑛+1(𝔽), If 𝑛 = 1, then 

 

𝐾 = 𝔰𝔬3(𝔽) = 𝑠𝑝𝑎𝑛{(

0 𝛼1 𝛼2

−𝛼2 𝛼3 0
−𝛼1 0 −𝛼3

) |𝛼1, 𝛼2, 𝛼3 ∈ 𝔽} 

has a basis are  

{𝑏1 = (
0 1 0
0 0 0
−1 0 0

) , 𝑏2 = (
0 0 1
−1 0 0
0 0 0

) , 𝑏3 = (
0 0 0
0 1 0
0 0 −1

)} 

Then , we need to show that 𝑏1, is a point space. For 𝑥 ∈ 𝔽𝑏1 we have 

𝑥 = (
0 𝜁 0
0 0 0
−𝜁 0 0

) for some 𝜁 ∈ 𝔽. Let ℓ = (

0 𝛼1 𝛼2

−𝛼2 𝛼3 0
−𝛼1 0 −𝛼3

) ∈ 𝔰𝔬3(𝔽). 

Then, a𝑑𝑥
2(𝐿) = [𝑥, [𝑥, ℓ]] 

 

 = [𝑥, (
−𝜁𝛼2 𝜁𝛼3 0
0 0 0
0 −𝜁𝛼1 −𝜁𝛼2

) − (

−𝜁𝛼2 0 0
0 −𝜁𝛼2 0
𝜁𝛼3 −𝜁𝛼1 0

)] 

 

 = [(
0 𝜁 0
0 0 0
−𝜁 0 0

) , (

0 𝜁𝛼3 0
0 𝜁𝛼2 0
−𝜁𝛼3 0 −𝜁𝛼2

)] 
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= (
0 𝜁2𝛼2 0
0 0 0
0 −𝜁2𝛼3 0

) − (
0 0 0
0 0 0
𝜁2𝛼2 −𝜁2𝛼3 0

) = (
0 𝜁2𝛼2 0
0 0 0
−𝜁2𝛼2 0 0

) ∈ 𝔽𝑏1 

Therefore, 𝔽𝑏1 and also 𝔽𝑏2 is a point space. while 𝔽𝑏2 is not point space.  

We will need the following lemma. For the proof see [12].  

Lemma2.7 [12] Let 𝐵 be an 𝐼-ideal of 𝐿. If 𝐵2 = 0, then 

(1) 𝑏1ℓ𝑏2 + 𝑏2ℓ𝑏1 ∈ 𝐵 for all 𝑏1, 𝑏2 ∈ 𝐵 and ℓ ∈ 𝐿. 

(2) 𝑏ℓ𝑏 ∈ 𝐵 for all 𝑏 ∈ 𝐵 and ℓ ∈ 𝐿.  

2.6 Definition [10] Let 𝛙: 𝐕 × 𝐕 → 𝔽  be a nondegenerate symmetric bilinear 

form. For each 𝐱 ∈ 𝐄𝐧𝐝𝐕 define 𝐱∗ by the following property 𝛙(𝐱∗(𝐯), 𝐰) =
𝛙(𝐯, 𝐱(𝐰)) for all 𝐯, 𝐰 ∈ 𝐕. Then the map ∗: 𝐄𝐧𝐝𝐕 → 𝐄𝐧𝐝𝐕 is an involution 

of the algebra 𝐄𝐧𝐝𝐕, called the adjoint involution with respect to 𝛙.   

2.7 Theorem [10, Ch.1, introduction ] The map 𝝍 ↦∗  induced one to one 

correspondence between equivalence classes of nondegenerate bilinear forms 

on 𝑽 modulo multiplication by a factor in 𝔽× and involution (of first kind) on 

𝑬𝒏𝒅𝑽.   

2.8 Definition [10] Let ∗ be an involution of 𝐄𝐧𝐝𝐕. We say that ∗ is orthogonal if 

it is adjoint to a symmetric non-alternating bilinear form on 𝐕.   

2.9 Definition [3] Let 𝑨 be an associative algebra with involution ∗ over a field 

𝔽and let 𝒂 ∈ 𝑨. Then we define the trace of 𝒂 by 𝝉(𝒂) = 𝒂 − 𝒂∗.  

3 Jordan Lie inner ideal of the orthogonal Lie algebras 

  

3.1 Theorem Suppose that 𝐀  is simple with involution and 𝐩 ≠ 𝟐 . Let 𝐱 ∈
𝐬𝐤𝐞𝐰(𝐀,∗). Then 𝐱 = 𝐱𝐲𝐱 for some 𝐲 ∈ 𝐬𝐤𝐞𝐰(𝐀,∗).  

Proof. We have 𝑥∗ = −𝑥. Since 𝐴 is V-Neumann algebra, 𝑥 = 𝑥𝑎𝑥 for some 𝑎 ∈

𝐴. Put 𝑦 =
1

2
(𝑎 − 𝑎∗) ∈ s𝑘𝑒𝑤(𝐴,∗). Then  

𝑥𝑦𝑥 =
1

2
𝑥(𝑎 − 𝑎∗)𝑥 =

1

2
(𝑥𝑎𝑥 − 𝑥𝑎∗𝑥) =

1

2
(𝑥 − (𝑥𝑎𝑥)∗) =

1

2
(𝑥 − 𝑥∗) =

1

2
(2𝑥) =

𝑥. ∎ 
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3.2 Lemma Let 𝐞𝐊𝐞∗ ⊆ 𝐁  be a subspace of 𝐊 = 𝐬𝐤𝐞𝐰(𝐀,∗)  such that 𝐞 ∈ 𝐁𝐊 

and 𝐞∗ ∈ 𝐊𝐁 . If 𝐞′  be an idempotent in 𝐀  such that 𝐞𝐞′ = 𝐞′𝐞 = 𝟎 , then 

𝐞′𝐁𝐞′∗
⊆ 𝐁.  

Proof. If 𝑒′𝐵𝑒′∗ = 0. Then 𝑒′𝐵𝑒′∗ ⊆ 𝐵. Suppose now that 𝑒′𝐵𝑒′∗ ≠ 0. Then ∃𝑎 ∈
𝐵 such that 𝑒′𝑎𝑒′∗ ≠ 0.  

 𝑒′𝑎𝑒′∗ = (1 − 𝑒)𝑎(1 − 𝑒∗) = 𝑎 − (𝑒𝑎 + 𝑎𝑒∗) + 𝑒𝑎𝑒∗ 

As 𝑒 ∈ 𝐵𝐾, ∃𝑏1 ∈ 𝐵 and 𝑘1 ∈ 𝐾 such that 𝑒 = 𝑏1𝑘1. This implies that  

 𝑒∗ = (𝑏1𝑘1)∗ = 𝑘1
∗𝑏∗ = 𝑘1𝑏1 

We have 𝑎 ∈ 𝐵 and 𝑒𝑎𝑒∗ ∈ 𝑒𝐾𝑒∗ ⊆ 𝐵. By Lemma 2.7,  

 𝑒𝑎 + 𝑎𝑒∗ = 𝑏1𝑘1𝑎 + 𝑎𝑘1𝑏1 ∈ 𝐵 

Therefore, 𝑒′𝑎𝑒′∗ ∈ 𝐵, as required.∎  

Recall that 𝐴 is simple, so 𝐴 can be identified with E𝑛𝑑(𝑉) for some vector space 

𝑉. We have the following proposition.  

3.3 Proposition Let 𝛙: 𝐕 × 𝐕 → 𝔽 be a non-singular form and let ∗ be an adjoint 

involution of 𝐀 = 𝐄𝐧𝐝(𝐕). Let 𝐞, 𝐞′ be idempotent in 𝐀 such that 𝐞𝐞′ = 𝐞′𝐞 =
𝟎. Suppose that 𝐞𝐊𝐞∗ ≠ 𝟎. Then the following hold 

For each 𝑘 ∈ 𝐾 such that 𝑒𝑘𝑒∗ ≠ 0, we have 

(1) 𝑐 = 𝑘 + 𝑒′𝑘𝑒′∗ ≠ 0. 

(2) 𝑒′𝐾𝑒∗ = 0. 
(3) 𝑒𝐾𝑒′∗ = 0.  

Proof. (1) Let 𝑣 ∈ 𝑉 such that 𝜓(𝑣, 𝑒𝑘𝑒∗(𝑣)) ≠ 0. Such 𝑣 exists because 𝜓 is non-

singular. We need to show that 𝜓(𝑒∗(𝑣), 𝑐𝑒∗(𝑣) ≠ 0. Since 𝑒𝑒′ = 0,  

 𝜓(𝑒∗(𝑣), 𝑐𝑒∗(𝑣)) = 𝜓(𝑣, 𝑒𝑐𝑒∗(𝑣)) 

 

 = 𝜓(𝑣, 𝑒(𝑘 + 𝑒′𝑘𝑒′∗
)𝑒∗(𝑣)) 

 

 = 𝜓(𝑣, 𝑒𝑘𝑒∗(𝑣)) + 𝜓(𝑣, 𝑒𝑒′𝑘𝑒′∗𝑒∗(𝑣)) 

 

 = 𝜓(𝑣, 𝑒𝑘𝑒∗(𝑣)) ≠ 0. 

(2) Let 𝑤 ∈ 𝑒′𝐾𝑒∗. Then there is 𝑘 ∈ 𝐾 such that 𝑤 = 𝑒′𝑘𝑒∗. For each 𝑣 ∈ 𝑉 we 

have  

𝜓(𝑒∗(𝑣), 𝑤𝑒∗(𝑣)) = 𝜓(𝑣, 𝑒𝑤𝑒∗(𝑣)) = 𝜓(𝑣, 𝑒𝑒′𝑘𝑒∗𝑒∗(𝑣)) = 𝜓(𝑣, 0) = 0, 

so 𝑤 = 𝑒′𝐾𝑒∗ = 0. 
(3) Let ℎ ∈ 𝑒𝐾𝑒′∗. Then there is 𝑘 ∈ 𝐾 such that ℎ = 𝑒𝑘𝑒′∗. For each 𝑣 ∈ 𝑉 

we have  
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𝜓(𝑒∗(𝑣), ℎ𝑒∗(𝑣)) = 𝜓(𝑣, 𝑒ℎ𝑒∗(𝑣)) = 𝜓(𝑣, 𝑒(𝑒𝑘𝑒′∗)𝑒∗(𝑣)) = 𝜓(𝑣, 0) = 0. 

Therefore, ℎ = 𝑒𝑘𝑒′∗ = 0. ∎  

The idea of the following lemma comes from McCrimmon’s paper [3].  

3.4 Lemma Let 𝐀  be an associative algebra with involution ∗  over a field 𝔽 . 

Suppose that 𝐋 = 𝐬𝐤𝐞𝐰(𝐀,∗). Then the trace 𝛕 that defined above by 𝛕(𝐚) =
𝐚 − 𝐚∗ has the following properties: 

(1) τ is linear.  

(2) τ(x) ∈ L for any x ∈ L. 

(3) xτ(a)x = τ(xax) For any a ∈ A and x ∈ L. 

(4) aτ(b) + τ(b)a∗ = τ(ab) + τ(ba∗) For any a, b ∈ A. 

(5) τ(a)xτ(a) = τ(axa) − axa∗ − a∗xa For any a ∈ A and x ∈ L.  

Proof. (1) Suppose that 𝑎, 𝑏 ∈ 𝐴 and 𝛼 ∈ 𝔽. Then  

 𝜏(𝛼𝑎) = 𝛼𝑎 − (𝛼𝑎)∗ = 𝛼(𝑎 − 𝑎∗) = 𝛼𝜏(𝑎); 

𝜏(𝑎 + 𝑏) = (𝑎 + 𝑏) − (𝑎 + 𝑏)∗ = (𝑎 − 𝑎∗) + (𝑏 − 𝑏∗) = 𝜏(𝑎) + 𝜏(𝑏). 

 Thus, 𝜏 is linear. 

(2) Let 𝑎 ∈ 𝐴. Then  

(𝜏(𝑎))
∗

= (𝑎 − 𝑎 ∗)∗ = 𝑎∗ − 𝑎 = −(𝑎 − 𝑎∗) = −𝜏(𝑎). 

Therefore, 𝜏(𝑎) ∈ 𝐿. 

(3) Let 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝐿. Then we have  

𝑥𝜏(𝑎)𝑥 = 𝑥(𝑎 − 𝑎∗)𝑥 = 𝑥𝑎𝑥 − 𝑥𝑎∗𝑥 = 𝑥𝑎𝑥 − (𝑥∗𝑎𝑥∗)∗ = 𝜏(𝑥𝑎𝑥). 

(4) Let 𝑎, 𝑏 ∈ 𝐴. Then  

aτ(b) + τ(b)a∗ = a(b − b∗) + (b − b∗)a∗ = ab − ab∗ + ba∗ − b∗a∗ 

 = (ab − b∗a∗) + (ba∗ − ab∗) 

 = (ab − (ab)∗) + (ba∗ − (ba∗)∗) = τ(ab) + τ(ba∗) 

(5) For any 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝐿 we have  

τ(a)xτ(a) = (a − a∗)x(a − a∗) = axa + a∗xa∗ − axa∗ − a∗xa 

= (axa − (axa)∗) − axa∗ − a∗xa = τ(axa) − axa∗ − a∗xa. ∎ 
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3.5 Lemma   Suppose that 𝐩 ≠ 𝟐, 𝟑 and 𝐊 = 𝐬𝐤𝐞𝐰(𝐄𝐧𝐝𝐕,∗). Then the following 

hold: 

1. If 𝜓(𝐾𝑣, 𝑤) = 0 for some nonzero vectors 𝑣, 𝑤 ∈ 𝑉, then 𝑤 ∈ 𝔽𝑣. Consequently 

𝐾𝑣 = 𝑣⊥ for any nonzero vector 𝑣 ∈ 𝑉. 

2. If 𝑈 is a subspace such that d𝑖𝑚𝑈 > 1, then 𝐾𝑈 = 𝑉. 

3. A transformation 𝑥 ∈ 𝐾 satisfies 𝑥𝐾𝑥∗ = 0 if and only if r𝑎𝑛𝑘(𝑥) ≤ 1.   

Proof.  (1) Suppose that 𝑣, 𝑤 ∈ 𝑉 be nonzero vectors such that 𝜓(𝐾𝑣, 𝑤) = 0. For 

the contrary we assume that 𝑤 ∉ 𝐾𝑣. Then we could find a linear transformation 𝑎 ∈
𝐴 such that 𝑎(𝑤) = 0 and 𝜓(𝑎(𝑣), 𝑤) ≠ 0. Note that 𝑎 − 𝑎∗ ∈ 𝐾. Thus,  

0 ≠ 𝜓(𝑎(𝑣), 𝑤) = 𝜓(𝑎(𝑣), 𝑤) − 0 = 𝜓(𝑎(𝑣), 𝑤) − 𝜓(𝑣, 𝑎(𝑤)) 

= 𝜓(𝑎(𝑣), 𝑤) − 𝜓(𝑎∗(𝑣), 𝑤) = 𝜓((𝑎 − 𝑎∗)(𝑣), 𝑤) = 0, 

 a contradiction. Therefore 𝑤 ∈ 𝐾𝑣. Consequently, for any nonzero vector 𝑣  we 

have 𝑣⊥ = 𝐾𝑣. 

(2) Suppose that 𝑈 be a subspace of 𝑉 such that d𝑖𝑚𝑈 > 1. Then  

 𝐾𝑈 = ∑𝑤∈𝑈 𝐾𝑤 = ∑𝑤∈𝑈 𝑤⊥ = 𝑉 

That is, any 𝑤⊥has co-dimensional 1. Thus, if 𝑤1
⊥ = 𝑤2

⊥. Then 𝑤1 ∈ 𝐾𝑤2. Hence 

any two independent vectors 𝑤𝑖
⊥ will span all 𝑉. 

(3) If 𝑥∗𝐾𝑥 = 0. Then  

 0 = 𝜓(𝑥∗𝐾𝑥(𝑣), 𝑣) = 𝜓(𝐾𝑥(𝑣), 𝑥(𝑣))  for all  𝑣 ∈ 𝑉. 

This implies 𝐾(𝑥(𝑉)) ≠ 𝑉, so by (2), we get that d𝑖𝑚(𝑥(𝑉)) ≤ 1.  ∎ 

   

3.6 Theorem Let 𝐞, 𝐞′, 𝐟 be an idempotent in 𝐀 = 𝐄𝐧𝐝𝐕 such that 𝐞𝐞′ = 𝐞′𝐞 = 𝟎 

and 𝐞∗𝐞 = 𝟎. Let  𝐞∗𝐟 = 𝐟𝐞∗ = 𝟎 and 𝐞∗′𝐟 = 𝐟𝐞∗′ = 𝐟,If 𝐁 = 𝐞𝐊𝐞′∗ then 𝐁 is a 

𝐉 −Lie.  

Proof. Let 𝑤 = 𝑒𝑘𝑒′∗ ≠ 0, by Theorem 3.1, 𝑤 = 𝑤𝑧′𝑤 for some 𝑧′ ∈ 𝐾. 

put 𝑧 = 𝑒′∗𝑧′𝑒. Then  

𝑤𝑧𝑤 = 𝑤(𝑒′∗𝑧′𝑒)𝑤 = 𝑒𝑘𝑒′∗𝑒′∗𝑧′𝑒𝑒𝑘𝑒′∗ = 𝑒𝑘𝑒′∗𝑧′𝑒𝑘𝑒′∗ = 𝑤𝑧′𝑤 

Let 𝑓 = 𝑧𝑤 = (𝑒′∗𝑧′𝑒)(𝑒𝑘𝑒′∗) = 𝑒′∗𝑧′𝑒𝑘𝑒′∗. Then  

 𝑒∗𝑓 = 𝑒∗𝑒′∗𝑧′𝑒𝑘𝑒′∗ = 0 

and  

 𝑓𝑒∗ = 𝑒′∗𝑧′𝑒𝑘𝑒′∗𝑒∗ = (1 − 𝑒∗)𝑧′𝑒𝑘(1 − 𝑒∗)𝑒∗ = 0 

 

 𝑒′∗𝑓 = 𝑒′∗𝑒′∗𝑧′𝑒𝑘𝑒′∗ = 𝑒′∗𝑧′𝑒𝑘𝑒′∗ = 𝑓 
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Also  

 𝑓𝑒′∗ = 𝑒′∗𝑧′𝑒𝑘𝑒′∗𝑒′∗ = 𝑓 

By Lemma 3.5 (3), since r𝑎𝑛𝑘(𝑓) = 1, so r𝑎𝑛𝑘(𝑓∗) = 1. Therefore,  

𝑓∗𝐾𝑓 = (𝑒′∗𝑧′𝑒𝑘𝑒′∗)∗𝐾(𝑒′∗𝑧′𝑒𝑘𝑒′∗) = 𝑒′𝑘∗𝑒∗𝑧′∗𝑒′𝐾𝑒′∗𝑧′𝑒𝑘𝑒′∗ = 0 

and  

 𝑓𝐾𝑓∗ = 𝑒′∗𝑧′𝑒𝑘𝑒′∗𝐾𝑒′𝑘∗𝑒∗𝑧′∗𝑒′ = 0 

Moreover, for any 𝑢 ∈ 𝐾𝑒𝑟(𝑤), 𝑓(𝑢) = 𝑧𝑤(𝑢) = 0  

Therefore, 𝐾𝑒𝑟(𝑤) ⊆ 𝐾𝑒𝑟(𝑓), both have co-dimension. Then 

𝐾𝑒𝑟(𝑤) = 𝐾𝑒𝑟(𝑓) = 𝐾𝑒𝑟(𝑤′) (3.1) 

Recall 𝑓 = 𝑧𝑤  is idempotent of rank 1. Let 𝑐 ∈ I𝑚(𝑤′) such that 𝑐 ∉ 𝐾𝑒𝑟(𝑤′). 
Then 𝑤′𝑓(𝑐) ≠ 0 

(if 𝑤′𝑓(𝑐) = 0, then either 𝑐 ∈ 𝐾𝑒𝑟(𝑓) or 𝑐 ∈ 𝐾𝑒𝑟(𝑤′) this is a contradiction) 

If 𝑤′𝑓(𝑐) ≠ 0, then 𝑐 ∈ I𝑚(𝑤′𝑓). Since 𝑐 ∈ I𝑚(𝑤′), so 𝑐 ∈ I𝑚(𝑤′𝑓) 

Therefore, I𝑚(𝑤′) ⊆ I𝑚(𝑤′𝑓). both have co-dimension, so  

 I𝑚(𝑤′) = I𝑚(𝑤′𝑓) 

Since 𝐾𝑒𝑟(𝑓) = 𝐾𝑒𝑟(𝑤′), so  

 𝐾𝑒𝑟(𝑤′𝑓) = 𝐾𝑒𝑟(𝑤′) 

Therefore, 𝑤′𝑓 = 𝑤′ for any 𝑤′ ∈ 𝑒𝐵𝑒′∗. 
Next, we claim that  

 𝐵 ⊆ 𝐵′ = 𝑒𝐾𝑒∗ + τ(ekf), 

for any 𝑑 ∈ 𝐵 we have 

 

 𝑑 = 𝑒𝑑𝑒∗ + 𝑒𝑑𝑒′∗ + 𝑒′𝑑𝑒∗ + 𝑒′𝑑𝑒′∗ 

= ede∗ + ede′∗ − (ede′∗)∗ 

= ede∗ + τ(ede′∗) 

= ede∗ + τ(w′) 

Since 𝑤′(𝑓) = 𝑤′ ∈ 𝑒𝐵𝑒′∗, we have that  

 𝐾 = 𝑒𝑘𝑒∗ + 𝜏(𝑤′𝑓) = 𝑒𝑑𝑒∗ + 𝜏(𝑒𝑑𝑒′∗𝑓) 

As 𝑒′∗𝑓 = 𝑓, so  

 𝐾 = 𝑒𝑘𝑒∗ + 𝜏(edf) ∈ 𝑒𝐾𝑒∗ + 𝜏(𝑒𝐾𝑓) 

put 𝐵′ = 𝑒𝐾𝑒∗ + 𝜏(𝑒𝐾𝑓). Then  

 (𝑒 + 𝑓∗)𝐾(𝑒 + 𝑓∗)∗ = (𝑒 + 𝑓∗)𝐾(𝑒∗ + 𝑓) 
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= 𝑒𝐾𝑒∗ + 𝑒𝐾𝑓 + 𝑓∗𝐾𝑒∗ + 𝑓∗𝐾𝑓 

= 𝑒𝐾𝑒∗ + 𝑒𝐾𝑓 − (𝑒𝐾𝑓)∗ 

= 𝑒𝐾𝑒∗ + 𝜏(𝑒𝐾𝑓) 

Let 𝔤 = 𝑒 + 𝑓∗, then  

 𝔤2 = (𝑒 + 𝑒′∗𝑧′𝑒𝑘𝑒′∗)(𝑒 + 𝑒′∗𝑧′𝑒𝑘𝑒′∗) 

 = 𝑒 + 𝑒′∗𝑧′𝑒𝑘𝑒′∗ = 𝔤 

and 𝔤∗𝔤 = (𝑒∗ + 𝑓)(𝑒 + 𝑓∗) 

 

 = (𝑒∗ + 𝑒′∗𝑧′𝑒𝑘𝑒′∗)(𝑒 + 𝑒′𝑘𝑒∗𝑧′∗𝑒′) = 0 

Now, let 𝔤𝑘1𝔤∗, 𝔤𝑘2𝔤∗ ∈ 𝔤𝐾𝔤  and ℓ ∈ 𝐾. Then 

 

 [𝔤𝑘1𝔤∗, [𝔤𝑘2𝔤∗, ℓ]] = [𝔤𝑘1𝔤∗, 𝔤𝑘2𝔤∗ℓ − ℓ𝔤𝑘2𝔤∗] 

 

= 𝔤𝑘1𝔤∗𝔤𝑘2𝔤∗ℓ − 𝔤𝑘2𝔤∗ℓ𝔤𝑘1𝔤∗ − 𝔤𝑘1𝔤∗ℓ𝔤𝑘2𝔤∗ + ℓ𝔤𝑘2𝔤∗𝔤𝑘1𝔤∗ 

 

 = −2𝔤𝑘1𝔤∗ℓ𝔤𝑘2𝔤∗ = 𝔤(−2𝑘1𝔤∗ℓ𝔤𝑘2)𝔤∗ ∈ 𝔤𝐾𝔤∗ 

Therefore, 𝐵′ = 𝔤𝐾𝔤∗ is an 𝐼-ideal of 𝐾and 𝐵′ is 𝐽-Lie of 𝐾. as required.∎  

3.7 Theorem Let 𝐞, 𝐞′, 𝐟 be an idempotent in 𝐄𝐧𝐝𝐕 such that 𝐞𝐞′ = 𝐞′𝐞 = 𝟎. Let 

𝐁 be a 𝐉 −Lie of 𝐊 = 𝐬𝐤𝐞𝐰(𝐀,∗) such that 𝐛𝐊𝐛 ≠ 𝔽𝐛 for all 𝐛 ∈ 𝐁. Then the 

following hold  

1.  𝑒(𝑉) = 𝑒𝐾𝑒∗𝐾(𝑣0
⊥) for all 𝑣0 ∈ 𝑉.  

2.  𝑒𝐵𝑒′∗(𝑉) = 𝑒(𝑉).  

Proof. (1) Suppose that 𝑏𝐾𝑏 ≠ 𝔽𝑏. We have 𝐵 ⊆ 𝐵′ = (𝑒 + 𝑓∗)𝐾(𝑒 + 𝑓∗)∗ 

By Lemma 3.5 (1), we have 𝐾𝑣0 = 𝑣0
⊥. Thus 𝑒𝐾𝑒∗𝐾(𝑣0) = 𝑒𝐾𝑒∗(𝑣0

⊥) 

Suppose that d𝑖𝑚(𝑒∗(𝑣0
⊥)) ≥ 1. 

If d𝑖𝑚(𝑒∗(𝑣0
⊥)) > 1, then by Lemma 3.5 (2),  

 𝐾𝑒∗(𝑣0
⊥) = 𝑉 ⟹ 𝑒𝐾𝑒∗(𝑣0

⊥) = 𝑒(𝑉) 

Therefore, 𝑒(𝑉) = 𝑒𝐾𝑒∗(𝑣0
⊥). 

and if d𝑖𝑚(𝑒∗(𝑣0
⊥)) = 1, then there exist a non-zero 𝑢0 ∈ 𝑉 such that  

 𝑒∗(𝑣0
⊥) = 𝔽𝑢0.                                           (3.2) 

 Then  

 𝑒𝐾𝑒∗(𝑣0
⊥) = 𝑒𝐾(𝑢0) = 𝑒(𝑢0

⊥) 
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for all 𝑢 ∈ 𝑢0
⊥, we have 𝑒(𝑢) ∈ (𝑣0

⊥)⊥ = 𝔽𝑣0, because  

 𝑒(𝑢) ∈ 𝑒(𝑢0
⊥) = 𝑒𝐾𝑒∗(𝑣0

⊥) ⊆ 𝐵(𝑣0
⊥) ⊆ 𝐾(𝑣0

⊥) = (𝑣0
⊥)⊥ = 𝔽𝑣0, 

so  

 𝑢0
⊥ = 𝑒′(𝑉) + 𝔽𝑣0 

Thus,  

 𝑒𝐾𝑒∗(𝑢0) = 𝑒(𝑢0
⊥) = 𝑒(𝑒′(𝑉) + 𝔽𝑣0) = 𝔽𝑣0.              (3.3) 

 

But for any non-zero 𝑟 ∈ 𝑢0
⊥ and 𝛼 ∈ 𝔽, we have 𝑒∗(𝑟) = 𝛼𝑢0 

𝛼𝑒∗(𝑢0) = 𝑒∗(𝛼𝑢0) = 𝑒∗(𝑒∗(𝑟)) = 𝑒∗(𝑟) = 𝛼𝑢0. 
so 𝑒∗(𝑢0) = 𝑢0. Thus, for any 𝑦 = 𝑒𝑦′𝑒∗ ∈ 𝑒𝐾𝑒∗, we can assume that 𝑦(𝑢0) = 0 

Let 𝑦(𝑉) ⊆ 𝑢0
⊥, by equation (3.3), 

𝑦(𝑉) = 𝑒𝑦′𝑒∗(𝑉) = 𝑒(𝑒𝑦′𝑒∗(𝑉)) = 𝑒(𝑦(𝑉)) ⊆ 𝑒(𝑢0
⊥) = 𝔽𝑣0 

By Lemma 3.5 (3), if 𝑦 has rank 1, then 𝑦∗𝐾𝑦 = 𝑦𝐾𝑦 = 0. 
By Theorem 3.1, ∃0 ≠ ℓ ∈ 𝐾 such that 𝑦 = 𝑦ℓ𝑦 ∈ 𝑦𝐾𝑦 = 0. 
Then, 𝑦 ∈ 𝑒𝐾𝑒∗ ⊆ 𝐵. Therefore 𝑦 ∈ 𝔽𝑏, but 𝑒𝐾𝑒∗ = 𝑏𝐾𝑏 

so 𝑦 ∈ 𝑏𝐾𝑏. Thus, if 𝑏𝐾𝑏 ≠ 𝔽𝑏, then 𝑒𝐾𝑒∗𝐾(𝑣0) = 𝑒(𝑉), as required. 

(2) for any ℓ, ℓ′ ∈ 𝐾, we have 𝑒ℓ𝑒∗ ∈ 𝑒𝐾𝑒∗ ⊆ 𝐵. 
Let 𝑏′′ = −[𝑒ℓ𝑒∗, [𝑏′, ℓ′]] ∈ [𝐵, [𝐵, 𝐾]] ⊆ 𝐵 

𝑏′ ∈ 𝐵 is the same 𝑏′ that satisfies 𝑤 = 𝑒𝑏′𝑒∗′ ≠ 0. Since 

 𝑏′′ = −[𝑒ℓ𝑒∗, [𝑏′, ℓ′]] = −[𝑒ℓ𝑒∗, 𝑏′ℓ′ − ℓ′𝑏′] 
 

 = −(𝑒ℓ𝑒∗𝑏′ℓ′ − 𝑏′ℓ′𝑒ℓ𝑒∗ − 𝑒ℓ𝑒∗ℓ′𝑏′ + ℓ′𝑏′𝑒ℓ𝑒∗) 

 

 𝑒𝑏′′𝑒′∗ = −𝑒(𝑒ℓ𝑒∗𝑏′ℓ′ − 𝑏′ℓ′𝑒ℓ𝑒∗ − 𝑒ℓ𝑒∗ℓ′𝑏′ + ℓ′𝑏′𝑒ℓ𝑒∗)𝑒′∗ 

 

 = −𝑒𝑒ℓ𝑒∗𝑏′ℓ′𝑒′∗ + 𝑒𝑏′ℓ′𝑒ℓ𝑒∗𝑒′∗ + 𝑒𝑒ℓ𝑒∗ℓ′𝑏′𝑒′∗ − 𝑒ℓ′𝑏′𝑒ℓ𝑒∗𝑒′∗ 

 

 = −𝑒ℓ𝑒∗𝑏′ℓ′𝑒′∗ + 𝑒ℓ𝑒∗ℓ′𝑏′𝑒′∗ 

and 𝑒ℓ𝑒∗𝑏′ℓ′𝑒′∗ = 𝑏𝑥ℓ𝑥𝑏𝑏′ℓ′𝑒′∗ = 0. As (𝑏𝑏′ = 0) 

 

 𝑒𝑏′′𝑒′∗ = 𝑒ℓ𝑒∗ℓ′𝑏′𝑒′∗ = 𝑒ℓ𝑒∗ℓ′(𝑒 + 𝑒′)𝑏′𝑒′∗ 

 

 = 𝑒ℓ𝑒∗ℓ′𝑒𝑏′𝑒′∗ + 𝑒ℓ𝑒∗ℓ′(𝑒′𝑏′𝑒′∗) 

By using equation , (𝑒′𝑏′𝑒′∗ = 0), we have 𝑒𝑏′′𝑒′∗ = 𝑒ℓ𝑒∗ℓ′(𝑒𝑏′𝑒′∗). 
Since 𝑤 = 𝑒𝑏′𝑒′∗, so 𝑒𝑏′′𝑒′∗ = 𝑒ℓ𝑒∗ℓ′𝑤 for any ℓ, ℓ′ ∈ 𝐾. 
Let 𝑣 ∈ 𝑉. Then 𝑒𝑏′′𝑒′∗(𝑣) = 𝑒ℓ𝑒′∗ℓ′𝑤(𝑣) = 𝑒ℓ𝑒′∗ℓ′(𝑣0) 

Since 𝑏𝐾𝑏 ≠ 𝔽𝑏, so we must have  

 𝑒𝐵𝑒′∗(𝑉) = 𝑒𝐾𝑒∗𝐾(𝑣0) 

Since 𝑒𝐾𝑒∗𝐾(𝑣0) = 𝑒(𝑉), we get that  

 𝑒𝐵𝑒′∗(𝑉) = 𝑒(𝑉) 

as required.∎  
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3.8 Theorem Let 𝐞, 𝐟 be an idempotent in 𝐀 = 𝐄𝐧𝐝𝐕 and let 𝐁 be a 𝐉 −Lie of 𝐊 =
𝐬𝐤𝐞𝐰(𝐀,∗). Suppose that 𝐛𝐊𝐛 = 𝔽𝐛 for all 𝐛 ∈ 𝐁.Then 𝐁 is a type one point 

space.  

Proof. Suppose that 𝑏𝐾𝑏 = 𝔽𝑏. we are going to prove that 𝐵 is a type one point 

space 

Recall that 𝐵 ⊆ 𝐵′ = 𝑒𝐾𝑒∗ + 𝜏(𝑒𝐾𝑓), so  

 𝐵′ = 𝑒𝐾𝑒∗ + 𝜏(𝑒𝐾𝑓) = 𝑏𝑥𝐾𝑥𝑏 + 𝜏(𝑒𝐾𝑓) 

 

 = 𝑏𝐾𝑏 + 𝜏(𝑒𝐾𝑓)                       (3.4) 

 

Since 𝑏𝐾𝑏 = 𝔽𝑏, so 

 

 𝐵′ = 𝔽𝑏 + 𝜏(𝑒𝐾𝑓) 

for any 𝑐 ∈ 𝐵′, there exist 𝜆 ∈ 𝔽 and ℓ ∈ 𝐾 such that  

 𝑐 = 𝜆𝑏 + 𝜏(𝑒ℓ𝑓) 

Then ∀𝑦 ∈ 𝐾, we have  

 cyc = (λb + τ(eℓf))y(λb + τ(eℓf)) 

 = λ2byb + λbyτ(eℓf) + λτ(eℓf)yb + τ(eℓf)yτ(eℓf) 

= λ2byb + λ(by)τ(eℓf) + λτ(eℓf)(by)∗ + τ(eℓf)yτ(eℓf) 

By Lemma 3.4 (3),  

 cyc = λ2byb + λτ(byeℓf) + λτ(eℓf(by)∗) 

 +τ(eℓfyeℓf) − eℓfy(eℓf)∗ − (eℓf)∗yeℓf 

λ2byb + λτ(byeℓf) + λτ(eℓfyb) + τ(eℓfyeℓf) − eℓfyf ∗ℓ∗e∗ − f ∗ℓ∗e∗yeℓf 

Since fKf ∗ = f ∗Kf = 0.  

 𝑐𝑦𝑐 = 𝜆2𝑏𝑦𝑏 + 𝜆𝜏(byeℓf) + 𝜆𝜏(𝑒ℓ𝑓𝑦𝑏) + 𝜏(𝑒ℓ𝑓𝑦𝑒ℓ𝑓) (3.5) 

we need to calculate each term. Since 𝑏𝐾𝑏 = 𝔽𝑏, so 

 

 𝑏𝑦𝑏 = 𝛼𝑏                              (3.6) 

  

 𝜏(𝑏𝑦𝑒ℓ𝑓) = 𝜏(bybxℓf) = 𝜏(𝛼𝑏𝑥ℓ𝑓) = 𝜏(𝛼(𝑒ℓ𝑓)) 
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 = 𝛼𝜏(𝑒ℓ𝑓)                               (3.7) 

 

for the third one we have  

 𝑒ℓ𝑓𝑦𝑏 = 𝑏𝑥ℓ𝑓𝑦𝑏 ∈ 𝑏𝐴𝑏 

Since 𝜏(𝑎) ∈ 𝐿 for any 𝑎 ∈ 𝐴, 𝜏(𝑒ℓ𝑓𝑦𝑏) ∈ 𝐾, then 𝑏𝜏(𝑥ℓ𝑓𝑦)𝑏 ∈ 𝑏𝐾𝑏 ⊆ 𝐵. 

By Lemma 3.5 (3), 

 

𝜏(𝑒ℓ𝑓𝑦𝑏) = 𝜏(𝑏𝑥ℓ𝑓𝑦𝑏) = 𝑏𝜏(𝑥ℓ𝑓𝑦)𝑏 = 𝛽𝑏                 (3.8) 

for some 𝛽 ∈ 𝔽 

for the four one we have  

 eℓfyeℓf = eℓfybxℓf = (eℓf)yb(xℓf) = 0 

Since f ∗Lf = 0, so byf ∗ℓe∗xℓf = 0. Then 

(eℓf)y(eℓf) = eℓfybxℓf − byf ∗ℓe∗xℓf 

= (eℓfyb − (eℓfyb)∗)xℓf 

= τ(eℓfyb)xℓf 

βb(xℓf) = βeℓf 

                                  τ(eℓfyeℓf) = βτ(eℓf)                                 (3.9) 

 

Substituting equation 3.6 , 3.7, 3.8 and 3.9 in 3.5, we get that 

𝑐𝑦𝑐 = (𝜆2𝛼)𝑏 + (𝜆𝛼)𝜏(𝑒ℓ𝑓) + (𝜆𝛽)𝑏 + 𝛽𝜏(𝑒ℓ𝑓) 

= (𝜆2𝛼 + 𝜆𝛽)𝑏 + (𝜆𝛼 + 𝛽)𝜏(𝑒ℓ𝑓) 

= (𝜆𝛼 + 𝛽)𝑐 

Therefore, 𝑐𝐾𝑐 = 𝔽𝑐, 𝐵′ is a point space 

since 𝐵 is a maximal point space, so 𝐵 = 𝐵′ 

Therefore, 𝐵 is a type one point space.∎  

3.9 Theorem Suppose that 𝑨 is simple with the orthogonal involution ∗ defined on 

it. If 𝒑 ≠ 𝟐, 𝟑 and 𝑨 is of dimensional greater than 16, Then every 𝑱 −Lie 𝑩 of 

[𝑲, 𝑲]  is of the form 𝒆𝑲𝒆∗  or 𝑩  is a type one point space. where 𝒆  is an 

idempotent in 𝑨 such that 𝒆∗𝒆 = 𝟎.  

Proof. Let 𝑏 ∈ 𝐵, Then by Theorem 3.1, ∃𝑥 ∈ 𝐾 such that 𝑏 = 𝑏𝑥𝑏. 
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Let 𝑒 = 𝑏𝑥.  Then 𝑒∗ = (𝑏𝑥)∗ = 𝑥∗𝑏∗ = 𝑥𝑏,  since 𝐵  is 𝐽 −Lie, 𝑏2 = 0 , so 𝑒∗𝑒 =
𝑥𝑏𝑏𝑥 = 0 . By Lemma 3.2, 𝑏𝐾𝑏 ⊆ 𝐵 

Suppose that 𝑏𝐾𝑏 ⊆ 𝐵 is maximal with the property. Since 

 

 𝑏𝐾𝑏 = 𝑏𝑥𝑏𝐾𝑏𝑥𝑏 ⊆ 𝑏𝑥𝐾𝑥𝑏 = 𝑒𝐾𝑒∗; 

 

 𝑒𝐾𝑒∗ = 𝑏𝑥𝐾𝑥𝑏 ⊆ 𝑏𝐾𝑏, 

We have  

 𝑒𝐾𝑒∗ = 𝑏𝐾𝑏 ⊆ 𝐵                                      (3.10) 

 

Next, we need to show that 𝐵 ⊆ 𝑒𝐾𝑒∗ 

Let 𝑒′ = 1 − 𝑒 and 𝑒′∗ = (1 − 𝑒)∗ = 1 − 𝑒∗, we have 

 

𝑏 = 1𝑏1 = (𝑒 + 𝑒′)𝑏(𝑒∗ + 𝑒′∗) = 𝑒𝑏𝑒∗ + 𝑒𝑏𝑒′∗ + 𝑒′𝑏𝑒∗ + 𝑒′𝑏𝑒′∗      (3.11) 

 

First, we need to show that 𝑒′𝐾𝑒′∗ = 0 

It remains to show that 𝑒′𝐾𝑒′∗ = 0. Assume to the contrary that 𝑒′𝐾𝑒′∗ ≠ 0. Then 

∃𝑐′ ∈ 𝐾 such that 𝑧 = 𝑒′𝑐′𝑒′∗
≠ 0. By Lemma 3.2 , 𝑒′𝐾𝑒′∗

⊆ 𝐵, so 𝑧 ∈ 𝐵. Let 𝑐 =
𝑏 + 𝑧 ∈ 𝐵. In the view of Lemma 3.3(1), we have 𝑐 ≠ 0 

First, we claim that 𝑏𝐾𝑏 ⊆ 𝑐𝐾𝑐. Since 𝑐 ∈ 𝐵, by Lemma 2.7, 𝑐𝐾𝑐 ⊆ 𝐵. Take any 

𝑦 ∈ 𝐾. Then  

 𝑐𝑒∗𝑦𝑒𝑐 = (𝑏 + 𝑧)𝑒∗𝑦𝑒(𝑏 + 𝑧) 

 = 𝑏𝑒∗𝑦𝑒𝑏 + 𝑏𝑒∗𝑦𝑒𝑧 + 𝑧𝑒∗𝑦𝑒𝑏 + 𝑧𝑒∗𝑦𝑒𝑧 

Since 𝑒𝑧 = 𝑒(𝑒′𝑐′𝑒′∗) = 0 and 𝑧𝑒∗ = (𝑒′𝑐′𝑒′∗)𝑒∗ = 0,  

 𝑐𝑒∗𝑦𝑒𝑐 = 𝑏𝑒∗𝑦𝑒𝑏 = 𝑏𝑥𝑏𝑦𝑏𝑥𝑏 = 𝑏𝑦𝑏 

so 𝑐𝑒∗𝐾𝑒𝑐 = 𝑏𝐾𝑏. As 𝑐𝑒∗𝐾𝑒𝑐 ⊆ 𝑐𝐾𝑐, we get that  

 𝑏𝐾𝑏 = 𝑐𝑒∗𝐾𝑒𝑐 ⊆ 𝑐𝐾𝑐                    (3.12) 

Next, we need to show that 𝑧𝐾𝑧 ⊆ 𝑐𝐾𝑐. Take any ℓ ∈ 𝐾, we have  

 𝑐𝑒′∗
ℓ𝑒′𝑐 = (𝑏 + 𝑧)𝑒′∗ℓ𝑒′(𝑏 + 𝑧) 

 

= 𝑏𝑒′∗ℓ𝑒′𝑏 + 𝑏𝑒′∗
ℓ𝑒′𝑧 + 𝑧𝑒′∗ℓ𝑒′𝑏 + 𝑧𝑒′∗ℓ𝑒′𝑧              (3.13) 

 By computing mutually each term, we get that  



Wasit Journal of Computer and Mathematic Science Vol. (1) No. (2) (2022) 

48 

 

be′∗ℓe′b = b(1 − e∗)ℓ(1 − e)b = bℓb − bℓeb − be∗ℓb + be∗ℓeb. 

= bℓb − bℓbxb − bxbℓb + bxbℓbxb = bℓb − bℓb − bℓb + bℓb = 0 (3.14) 

be′∗
ℓe′z = b(1 − e∗)ℓ(1 − e)z = bℓz − bℓez − be∗ℓz + be∗ℓez 

 = bℓz − bxbℓz = bℓz − bℓz = 0                          (3.15) 

ze′∗ℓe′b = z(1 − e∗)ℓ(1 − e)b = zℓb − zℓeb − ze∗ℓb + ze∗ℓeb = zℓb − zℓb =
0 (3.16) 

 𝑧𝑒′∗ℓ𝑒′𝑧 = 𝑧(1 − 𝑒∗)ℓ(1 − 𝑒)𝑧 = 𝑧ℓ𝑧 − 𝑧ℓ𝑒𝑧 − 𝑧𝑒∗ℓ𝑧 + 𝑧𝑒∗ℓ𝑒𝑧 = 𝑧ℓ𝑧     (3.17) 

By substituting equation 3.14, 3.15, 3.16 and 3.17 in 3.13, we get that 𝑐𝑒′∗
ℓ𝑒′𝑐 =

𝑧ℓ𝑧. Since ℓ ∈ 𝐾, by Lemma 3.2, 𝑒′∗ℓ𝑒 ∈ 𝐾, so  

 𝑧𝐾𝑧 = 𝑐𝑒′∗𝐾𝑒′𝑐 ⊆ 𝑐𝐾𝑐                                (3.18) 

Recall that 𝑧 = 𝑒′𝑐′𝑒′∗ ∈ 𝐾. By Theorem 3.1, ∃𝑘 ∈ 𝐾  such that 𝑧 = 𝑧𝑘𝑧 ∈ 𝑧𝐾𝑧. 
By equation 3.18, we get that 𝑧 ∈ 𝑧𝐾𝑧 ⊆ 𝑐𝐾𝑐. But 𝑧 ∉ 𝑏𝐾𝑏 ⊆ 𝑐𝐾𝑐, a contradiction. 

Therefore,  

 𝑒′𝐾𝑒′∗ = 0                                         (3.19) 

 

Therefore, 𝑒′𝑏𝑒′∗ = 0. Now we have to consider to two cases depending on 𝑒𝐾𝑒′∗ 

whether it is zero or not 

If 𝑒𝐾𝑒′∗ = 0, then (𝑒′𝑏𝑒∗)∗ = 𝑒𝑏∗𝑒′∗ = −𝑒𝑏𝑒′∗ ∈ 𝑒𝐾𝑒′∗ 

substituting in equation (3.11), we get that  

 𝑏 = 𝑒𝑏𝑒∗ + 𝑒𝑏𝑒′∗ − 𝑒𝑏𝑒′∗ + 𝑒′𝑏𝑒′∗ 

 = 𝑒𝑏𝑒∗ ∈ eK𝑒∗ 

Therefore, 𝐵 = 𝑒𝐾𝑒∗. 
Suppose now that 𝑒𝐾𝑒′∗ ≠ 0. Then ∃𝑘 ∈ 𝐾 such that 𝑤 = 𝑒𝑘𝑒′∗ ≠ 0. Since 

 

 𝑤∗𝐾𝑤 = (𝑒𝑘𝑒′∗)∗𝐾(𝑒𝑘𝑒′∗) 

 = 𝑒′𝑘∗𝑒∗𝐾𝑒𝑘𝑒′∗ ⊆ 𝑒′𝐾𝑒′∗ = 0, 

By Lemma 3.5 (3), rank 𝑤 ≤ 1,  so r𝑎𝑛𝑘(𝑤) = 0  or r𝑎𝑛𝑘(𝑤) = 1.  Thus, 

r𝑎𝑛𝑘(𝑤) = 1 (because 𝑤 ≠ 0). 

Hence, d𝑖𝑚𝑤(𝑉) must be one, fix any 𝑣0 ∈ 𝑉 such that 𝑤(𝑉) = 𝔽𝑣0. 
Let 𝑣 ∈ 𝑉 such that  

 𝑤(𝑣) = 𝑣0.           (3.20) 

 𝑉 = 𝐼𝑚(𝑤) + 𝐾𝑒𝑟(𝑤) 
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 = 𝔽𝑣 + 𝐾𝑒𝑟(𝑤) 

Let 𝑤′ = 𝑒ℓ𝑒′∗ ∈ 𝑒𝐵𝑒′∗ be a non-zero transformation. Then 

 

 0 = 𝑒′(ℓ(𝑒∗𝐾𝑒)𝑘 + 𝑘(𝑒∗𝐾𝑒)ℓ)𝑒′∗ 

 = 𝑒′ℓ(𝑒∗𝐾𝑒)𝑘𝑒′∗ + 𝑒′𝑘(𝑒∗𝐾𝑒)ℓ𝑒′∗ 

 = (𝑒′ℓ𝑒∗)𝐾(𝑒𝑘𝑒′∗) + (𝑒′𝑘𝑒∗)𝐾(𝑒ℓ𝑒′∗) 

 = 𝑤′∗𝐾𝑤 + 𝑤∗𝐾𝑤′ 

If 𝑢 ∈ 𝐾𝑒𝑟(𝑤), then 

 

 0 = 𝜓(0(𝑣), 𝑢) = 𝜓((𝑤′∗𝐾𝑤 + 𝑤∗𝐾𝑤′)(𝑣), 𝑢) 

 = 𝜓(𝑤′∗𝐾𝑤(𝑣), 𝑢) + 𝜓(𝑤∗𝐾𝑤′(𝑣), 𝑢) 

 = 𝜓(𝐾𝑤(𝑣), 𝑤′(𝑢)) + 𝜓(𝐾𝑤′(𝑣), 𝑤(𝑢)) 

Since 𝑢 ∈ 𝐾𝑒𝑟(𝑤), so 𝑤(𝑢) = 0. 
 

 = 𝜓(𝐾𝑤(𝑣), 𝑤′(𝑢)) 

By Lemma 3.5 (1), 𝑤′(𝑢) ∈ 𝔽𝑣0. Now either 𝑤′(𝑢) = 0 or 𝑤′(𝑢) ≠ 0 for all 𝑢 ∈
𝐾𝑒𝑟(𝑤) 

If 𝑤′(𝑢) = 0 for all 𝑢 ∈ 𝐾𝑒𝑟(𝑤), then 𝐾𝑒𝑟(𝑤) ⊆ 𝐾𝑒𝑟(𝑤′) 

But d𝑖𝑚(𝑤(𝑣)) = d𝑖𝑚(𝑤′(𝑣)) = 1, so 𝐾𝑒𝑟(𝑤) = 𝐾𝑒𝑟(𝑤′) 

Suppose now that 𝑤′(𝑢) ≠ 0  for some 𝑢 ∈ 𝐾𝑒𝑟(𝑤) , then I𝑚(𝑤′) = 𝔽𝑣0 ⊆
I𝑚(𝑤). 

Since both have dimension 1, so I𝑚(𝑤′) = I𝑚(𝑤) = 𝔽𝑣0. 
Then by Theorem 3.6, 𝐵′ is a 𝐽 −Lie. 

Now, we need to show that 𝐵 = 𝐵′, by Theorem 3.7,  

 𝑒(𝑉) = 𝑒𝐾𝑒∗𝐾(𝑣0
⊥) 

and  

 𝑒𝐵𝑒′∗(𝑉) = 𝑒(𝑉)         (3.21) 

 

we claim that 𝑒𝐵′𝑒′∗(𝑉) ⊆ 𝑒𝐵𝑒′∗ 

we have 𝐵′ = 𝑒𝐾𝑒∗ + 𝜏(𝑒𝐾𝑓) 

 

 𝑒𝐵′𝑒′∗ = 𝑒(𝑒𝐾𝑒∗ + 𝜏(𝑒𝐾𝑓))𝑒′∗ 
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 = 𝑒𝐾𝑒∗𝑒′∗ + 𝑒𝐾𝑓𝑒′∗ − (𝑒𝐾𝑓)∗𝑒′∗ 

 = 𝑒𝐾𝑓𝑒′∗ − 𝑓∗𝐾𝑒∗𝑒′∗ = 𝑒𝐾𝑓𝑒′∗ 

Since 𝑒∗𝑒′∗ = 0. Recall that 𝑓𝑒′∗ = 𝑓, 
 

 𝑒𝐵′𝑒∗ = 𝑒𝐵𝑓 

Let 𝑒ℓ𝑓 ∈ 𝑒𝐾𝑓 

 

 𝑒ℓ𝑓(𝑣) = 𝑒ℓ𝑧𝑤(𝑣) = 𝑒ℓ𝑧(𝑣0) ∈ 𝑒𝐾𝐾(𝑣0) = 𝑒𝐾(𝑣0
⊥) = 𝑒(𝑣0) ∈ 𝑒(𝑉) 

because (𝑤(𝑣) = 𝑣0). By equation (3.21), 𝑒(𝑉) = 𝑒𝐵𝑒′∗ 

𝑒ℓ𝑓(𝑣) ∈ 𝑒𝐵𝑒′∗(𝑉). Therefore ∃𝑤′ ∈ 𝑒𝐵𝑒′∗ such that 𝑒ℓ𝑓(𝑣) = 𝑤′(𝑣). 
Since 𝑉 = 𝔽𝑣0 + 𝐾𝑒𝑟(𝑤) and 𝐾𝑒𝑟(𝑓) = 𝐾𝑒𝑟(𝑤) = 𝐾𝑒𝑟(𝑤′) fore equation (3.1), 

and 𝑤′ ∈ 𝑒𝐵𝑒′∗, 
for any 𝑒ℓ𝑓 ∈ 𝑒𝐾𝑓 = 𝑒𝐵′𝑒′∗, there exist 𝑤′ ∈ 𝑒𝐵𝑒′∗ such that 𝑒ℓ𝑓 = 𝑤′ ∈ 𝑒𝐵𝑒′∗ 

Then 𝑒𝐵′𝑒′∗ ⊆ 𝑒𝐵𝑒′∗ and 𝐵′ ⊆ 𝐵. Therefore 𝐵′ = 𝐵. 

There exist idempotent (𝑒 + 𝑓∗) such that 𝐵 = (𝑒 + 𝑓∗)𝐾(𝑒 + 𝑓∗)∗. 

Now, when 𝑏𝐾𝑏 = 𝔽𝑏, by Theorem 3.8, 𝐵′ = 𝐵 is a type one point space. 

Suppose that I𝑚(𝑤′) = I𝑚(𝑤) = 𝔽𝑣0 for any 𝑤′ ∈ 𝑒𝐵𝑒′∗, we need to show that 𝐵 

is a type one point space 

Recall that 𝑤𝑧𝑤 = 𝑤, 𝑧 = 𝑒′∗𝑧′𝑒 

Let  

 𝑓 = 𝑤𝑧 = 𝑒𝑏′𝑒′∗𝑧′𝑒 

Then  

 𝑓𝑒′ = 𝑒𝑏′𝑒′∗𝑧′𝑒(1 − 𝑒) = 0 

and  

 𝑒′𝑓 = (1 − 𝑒)𝑒𝑏′𝑒′∗𝑧′𝑒 = 0 

 

 𝑓2 = (𝑒𝑏′𝑒′∗𝑧′𝑒)(𝑒𝑏′𝑒′∗𝑧′𝑒) = 𝑒𝑏′𝑒′∗𝑧′𝑒 = 𝑓 

𝑒𝑓 = 𝑒𝑒𝑏′𝑒′∗𝑧′𝑒 = 𝑒𝑏′𝑒′∗𝑧′𝑒 = 𝑓 and 𝑓𝑒 = 𝑒𝑏′𝑒′∗𝑧′𝑒𝑒 = 𝑓 

Since r𝑎𝑛𝑘(𝑓) = 1, so r𝑎𝑛𝑘(𝑓∗) = 1 

Recall that 𝑓∗𝐾𝑓 = 𝑓𝐾𝑓∗ = 0. we have I𝑚(𝑤) = I𝑚(𝑓) 

for any 𝑤′ ∈ 𝑒𝐵𝑒′∗, we have I𝑚(𝑤) = I𝑚(𝑓) = I𝑚(𝑤′) 

we have going to prove that there exist point space 𝐵′ = 𝑒𝐾𝑒∗ + 𝜏(𝑓𝐾𝑒′∗) such 

that 𝐵 = 𝐵′ 

First, we claim that 𝑓𝑤′ = 𝑤′ for any 𝑤′ ∈ 𝑒𝐵𝑒′∗ 

Let 𝑢 ∈ 𝐾𝑒𝑟(𝑤′), then 𝑓𝑤′(𝑢) = 0 
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so 𝐾𝑒𝑟(𝑤′) ⊆ 𝐾𝑒𝑟(𝑓(𝑤′)), therefore 𝐾𝑒𝑟(𝑤′) = 𝐾𝑒𝑟(𝑓(𝑤′)) ( co-dimension 1) 

Since I𝑚(𝑤′) = I𝑚(𝑓𝑤′), so 𝑓𝑤′ = 𝑤′ for any 𝑤′ ∈ 𝑒𝐵𝑒′∗. 
Second, we claim that  

 𝐵 ⊆ 𝐵′ = 𝑒𝐾𝑒∗ + 𝜏(𝑓𝐾𝑒′∗) 

take 𝐾 ∈ 𝐵, then  

 K = eKe∗ + eKe′∗ + e′Ke∗ + e′Ke′∗ 

 K = eKe∗ + τ(eKe′∗) 

 K = eKe∗ + τ(w′) 

Since 𝑓𝑤′ = 𝑤′, so 

 

 𝐾 = 𝑒𝐾𝑒∗ + 𝜏(𝑓𝑒𝐾𝑒′∗) 

because 𝑓𝑒 = 𝑓. For all 𝐾 ∈ 𝐵, we have  

 𝐾 = 𝑒𝐾𝑒∗ + 𝜏(𝑓𝐾𝑒′∗) 

 𝐵 ⊆ 𝐵′ = 𝑒𝐾𝑒∗ + 𝜏(𝑓𝐾𝑒′∗) 

Now, we claim that 𝐵 is a point space, that is 𝑏𝐾𝑏 ≠ 𝔽𝑏. Then  

 eKe∗K(v0) ⊆ eKe′∗(v0) ⊆ fKe′∗(v) = 𝔽𝑣0 

but  

 𝑒𝐾𝑒′∗𝐾(𝑣0) = 𝑒(𝑉) ≠ 𝔽𝑣0 

because r𝑎𝑛𝑘𝑒(𝑉) > 1. 

Finally, we claim that 𝐵′ = 𝑒𝐾𝑒∗ + 𝜏(𝑓𝐾𝑒′∗) is point space 

By using equation (3.4), and our assume that 𝑏𝐾𝑏 = 𝔽𝑏, we have 

 

 B′ = eKe∗ + τ(fKe′∗) 

 = bxKxb + τ(fKe′∗) 

 = bKb + τ(fKe′∗) = 𝔽b + τ(fKe′∗) 

for any 𝑐′ ∈ 𝐵′, ∃ℓ ∈ 𝐾, 𝜆 ∈ 𝔽 such that  

 c′ = 𝜆𝑏 + 𝜏(𝑓ℓ𝑒′∗) 

for all 𝑦 ∈ 𝐾, we have  

 𝑐′𝑦𝑐′ = (𝜆𝑏 + 𝜏(𝑓ℓ𝑒′∗))𝑦(𝜆𝑏 + 𝜏(𝑓ℓ𝑒′∗)) 

= 𝜆2𝑏𝑦𝑏 + 𝜆𝑏𝑦𝜏(𝑓ℓ𝑒′∗) + 𝜆𝜏(𝑓ℓ𝑒′∗)𝑦𝑏 + 𝜏(𝑓ℓ𝑒′∗)𝑦(𝑓ℓ𝑒′∗) 
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= 𝜆2𝑏𝑦𝑏 + 𝜆(𝑏𝑦)𝜏(𝑓ℓ𝑒′∗) + 𝜆𝜏(𝑓ℓ𝑒′∗)(𝑏𝑦)∗ + 𝜏(𝑓ℓ𝑒′∗)𝑦𝜏(𝑓ℓ𝑒′∗) 

By Lemma 3.4 (3),  

= 𝜆2𝑏𝑦𝑏 + 𝜆𝜏(𝑏𝑦𝑓ℓ𝑒′∗) + 𝜆𝜏(𝑓ℓ𝑒′∗(𝑏𝑦)∗) + 𝜏(𝑓ℓ𝑒′∗𝑦𝑓ℓ𝑒′∗) 

 −𝑓ℓ𝑒′∗𝑦(𝑓ℓ𝑒′∗)∗ − (𝑓ℓ𝑒′∗)∗𝑦𝑓ℓ𝑒′∗ 

= 𝜆2𝑏𝑦𝑏 + 𝜆𝜏(𝑏𝑦𝑓ℓ𝑒′∗) + 𝜆𝜏(𝑓ℓ𝑒′∗𝑦𝑏) + 𝜏(𝑓ℓ𝑒′∗𝑦𝑓ℓ𝑒′∗) 

 −𝑓ℓ𝑒′∗𝑦𝑒′ℓ∗𝑓∗ − 𝑒′ℓ∗𝑓∗𝑦𝑓ℓ𝑒′∗ 

Since 𝑓𝐾𝑓∗ = 𝑓∗𝐾𝑓 = 0 

𝑐′𝑦𝑐′ = 𝜆2𝑏𝑦𝑏 + 𝜆𝜏(𝑏𝑦𝑓ℓ𝑒′∗) + 𝜆𝜏(𝑓ℓ𝑒′∗𝑦𝑏) + 𝜏(𝑓ℓ𝑒′∗𝑦𝑓ℓ𝑒′∗)        (3.22) 

 

we need to calculate each term 

Since 𝑏𝐾𝑏 = 𝔽𝑏, so 

 

 𝑏𝑦𝑏 = 𝛼𝑏                              (3.23) 

𝜏(𝑏𝑦𝑓ℓ𝑒′∗) = 𝜏(𝑏𝑦𝑒𝑓ℓ𝑒′∗) = 𝜏(𝑏𝑦𝑏𝑥𝑓ℓ𝑒′∗) = 𝜏(𝛼𝑏𝑥𝑓ℓ𝑒′∗) 

 = 𝜏(𝛼(𝑒𝑓ℓ𝑒′∗) = 𝛼𝜏(𝑒𝑓ℓ𝑒′∗)                   (3.24) 

For the third one we have 

 

 𝑓ℓ𝑒′∗𝑦𝑏 = 𝑒𝑓ℓ𝑒′∗𝑦𝑏 = 𝑏𝑥𝑓ℓ𝑒′∗𝑦𝑏 ∈ 𝑏𝐴𝑏 

Since 𝜏(𝑎) ∈ 𝐿 for any 𝑎 ∈ 𝐴, so 𝜏(𝑥𝑓ℓ𝑒′∗𝑦) ∈ 𝐾,then 𝑏𝜏(𝑥𝑓ℓ𝑒′∗𝑦)𝑏 ∈ 𝑏𝐾𝑏 ⊆ 𝐵 

By Lemma 3.5 (3),  

 𝜏(𝑓ℓ𝑒′∗𝑦𝑏) = 𝜏(𝑏𝑥𝑓ℓ𝑒′∗𝑦𝑏) = 𝑏𝜏(𝑥𝑓ℓ𝑒′∗𝑦)𝑏 = 𝛽𝑏 (3.25) 

 

Lastly, we have  

 𝑓ℓ𝑒′∗𝑦𝑓ℓ𝑒′∗ = 𝑓ℓ𝑒′∗yefℓ𝑒′∗ = 𝑓ℓ𝑒′∗𝑦𝑏𝑥𝑓ℓ𝑒′∗ 

 = (𝑓ℓ𝑒′∗)𝑦𝑏(𝑥𝑓ℓ𝑒′∗) 

Since 𝑓∗𝐿𝑓 = 0, so 𝑏𝑦𝑒′ℓ𝑓∗𝑥𝑓ℓ𝑒′∗ = 0. Then 

 

 (𝑓ℓ𝑒′∗)𝑦(𝑒𝑓ℓ𝑒′∗) = 𝑓ℓ𝑒′∗𝑦𝑏𝑥𝑓ℓ𝑒′∗ − 𝑏𝑦𝑒′ℓ𝑓∗𝑥𝑓ℓ𝑒′∗ 
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 = (fℓe′∗yb − (fℓe′∗yb)∗)xfℓe′∗ 

 = τ(fℓe′∗yb)xfℓe′∗ = βb(xfℓe′∗) 

 ⟹ τ(fℓe′∗yfℓe′∗) = βτ(fℓe′∗)                (3.26) 

Substituting equation 3.23, 3.24, 3.25 and 3.26 in equation 3.22. We get that 

 

 c′yc′ = (λ2α)b + (αλ)τ(efℓe′∗) + (λβ)b + βτ(fℓe′∗) 

 = (λ2α + λβ)b + (αλ + β)τ(fℓe′∗) 

 = (λα + β)(λb + τ(fℓe′∗)) 

 c′yc′ = (λα + β)c′ 

Therefore, 𝑐′𝐾𝑐′ = 𝔽𝑐′ 

𝐵′ is point space and 𝐵 ⊆ 𝐵′ but 𝐵 is maximal. Therefore  

 𝐵 = 𝐵′ 

𝐵 is a type one point space.∎  

4 Conclusion 

 Every Jordan-Lie inner ideals of the orthogonal Lie algebras is either 𝐵 = 𝑒𝐾𝑒∗ or 

𝐵 is a type one point space. one can find an idempotent 𝑒 ∈ 𝐴 such that this inner 

ideal can be written in the form  𝑒𝐾𝑒∗. We study the relationship between these alge-

bras and their corresponding Lie ones.  Also study Jordan-Lie inner ideals of these Lie 

algebras. proved that every Jordan-Lie inner ideal of the orthogonal Lie algebra of an 

associative algebra (finite dimensional) is generated by an idempotent 𝑒 ∈ 𝐴 with the 

property 𝑒∗𝑒 = 0.  
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Abstract—In this paper, we continue to study the properties of the relation 

with some type of open sets, and we introduce  𝛼-continuous function, semi-

continuous function, 𝛼∗-continuous function, and  𝛼∗∗-continuous function are 

studied and some of their characteristics are discussed. In this work, we need to 

introduce the concepts of function, especially the inverse function to find all 

continuous function, so we want to prove some examples, theorems, and obser-

vations of our subject with the help of new concepts for the alpha-open sets of 

sums to make it easier for us to find a relationship between these formulas as 

well as the converse relationship has been studied and explained with illustra-

tion many examples. Hence, reaching to get a relationship (continuous, 𝛼 -

continuous, semi 𝛼-continuous) function at new condition.   

Keywords— (semi-continuous, 𝛼-continuous, semi 𝛼-continuous, 𝛼∗-

continuous,  𝛼∗∗-continuous ) function 

1 Introduction 

Open sets and closed sets play a key role in constructing topological space, which 

is why scientists and researchers in the field of mathematics paid great attention to 

them, and used new patterns as synonyms for open and closed sets. Our studies focus 

on continuous functions of the alpha type.it is known that the continuity of functions 

is evident from the concept of open and closed function s according to the following 

criterion. Let the function be defined from the topological space to another one, 

𝑓: (𝑋, 𝜏𝑥) → (𝑌, 𝜏𝑦 ). Then the function is continuous if and only if the invers image 

of each set is open or closed in the second space is also open or closed in the first 

space. 
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2 Preliminaries 

2.1 Definition [1] 

If 𝑓:(𝑋, 𝑇𝑋)→ (𝑌, 𝑇𝑌) be two topological space. Then 𝑓 is named 

 𝜶-continuous function if and only if,  for each 𝑨 𝒊𝒔 𝒐𝒑𝒆𝒏 set 𝑖𝑛 𝒀.  

Thus  𝒇−𝟏 (𝐀) is 𝛂-𝐨𝐩𝐞𝐧 Set in (X, TX). 

2.2 Definition [2] 

If 𝑓 ∶ (𝑋, 𝑇𝑋) →  (𝑌, 𝑇𝑌) be two topological space, thus 𝑓 is termed  
𝒔𝒆𝒎𝒊-continuous function. When 𝐴  𝑖𝑠 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑌, 𝑓−1(𝐴) in(𝑌,𝜏𝑥) thus 

𝑓−1(𝐴) 𝑖𝑠 𝒔𝒆𝒎𝒊-open set in (𝑋, 𝜏𝑥). Such that (𝑓−1(𝐴) ⊆ 𝐶𝑙 𝐼𝑛𝑡 𝑓−1(𝐴)) 

2.3 Theorem [2] 

Each 𝑐𝑜𝑛𝑡𝑖𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is 𝑠𝑒𝑚𝑖-𝑐𝑜𝑛𝑡𝑖𝑢𝑜𝑢𝑠 function. 

     𝑷𝒓𝒐𝒐𝒇 ∶ 
Let 𝑓be 𝑐𝑜𝑛𝑡𝑖𝑢𝑜𝑢𝑠, there exists 𝑓−1(𝐴) open in ( 𝑌,𝜏𝑌) 

Therefore 𝑓−1(𝐴)is open in(𝑋, 𝜏𝑥). since ( every open set is 𝒔𝒆𝒎𝒊-open set) 

Then 𝑓 is 𝑠𝑒𝑚𝑖-continuous.  

 

The opposite of the previous theorem does not have to be true  and the  

following   Example illustrates this. 

2.4 Example  

If 𝑋 = {0,2,4,6}, 𝑇𝑥 = {∅, {4}, {0,2}, {0,2,4}. Define in(𝑋, 𝑇𝑥 )space, 

And let 𝑌 = {1,3,5}, 𝑇𝑦 = {∅, {5}, {3}, {1,3}, {5,3}, 𝑌}. Define in Y space, 

Then 𝑓: 𝑋 → 𝑌  ;   𝑓(𝑥1) = 𝑓(𝑥2) = 3, 𝑓(𝑥3) = 5, 𝑓(𝑥4) = 1,, 
Clearly ; open sets of space  𝑌 ∶ {∅, {5}, {3}, {1,3}, {5,3}, 𝑌}. 
And also 𝑠𝑒𝑚𝑖-open sets of space 𝑋 :𝑆𝑂(𝑋, 𝑇𝑥) 

 {∅, {4}, {0,2}, {0,2,4}, {0,2,6}, {4,6}, 𝑋}. 
That is  perfect 𝑓 is 𝑠𝑒𝑚𝑖-continuous,  

But  𝒇 is not continuous because ; 

𝒇−𝟏({𝟏, 𝟓}) = {𝟒, 𝟔} ∉ 𝑻𝒙. 

2.5  Remark  

  Let 𝑓 ∶ (𝑋, 𝑇𝑥) → (𝑌, 𝑇𝑦) ; 

Continuous →  𝜶-continuous  → 𝒔𝒆𝒎𝒊 𝜶-continues. But the convers is not  

Right in general. 
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2.6 Theorem [3] 

If (𝑋 , 𝑇𝑋 ) too (𝑌 , 𝑇𝑌 ) are a 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑠𝑝𝑎𝑐𝑒𝑠 and if  𝑓: 𝑋 →  𝑌 be    

𝛼-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 function, then 𝑓 is 𝑠𝑒𝑚𝑖-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠.  

Proof : 

Since 𝑓 is 𝛼-continuous function. Thus 𝑓−1(𝐴) ⊆ 𝐼𝑛𝑡 𝐶𝑙 𝐼𝑛𝑡𝑓−1(𝐴).          
By (proposition  let 𝒇: 𝑿 →  𝒀 is 𝜶 -continuous if and only if each open Set 𝑨  

 of Y   𝒇−𝟏(𝑨) ⊆ 𝑰𝒏𝒕 𝑪𝒍 𝑰𝒏𝒕 𝒇−𝟏( 𝑨 ). ) 
Obviously 𝐼𝑛𝑡 𝐶𝑙 𝐼𝑛𝑡 𝑓−1(𝐴) ⊆ 𝐶𝑙 𝐼𝑛𝑡 𝑓−1(𝐴) ,  

So   𝑓−1 (𝐴) ⊆ 𝐶𝑙 𝐼𝑛𝑡 𝑓−1 (𝐴).  hence   𝑓 is 𝑠𝑒𝑚𝑖-continuous. 

(By,  let (𝑿, 𝑻𝑿) and (𝒀, 𝑻𝒀) be two 𝒕𝒐𝒑𝒐𝒍𝒐𝒈𝒊𝒄𝒂𝒍 𝑺𝒑𝒂𝒄𝒆,  

Thus 𝒇 ∶ 𝑿 → 𝒀 is semi-𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 if every 𝒐𝒑𝒆𝒏 𝒔𝒆𝒕 𝑨𝒊𝒏 𝒀,  

𝒇−𝟏(𝑨) ⊆ 𝒄𝒍 𝑰𝒏𝒕 𝒇−𝟏(𝑨)). 

 

The convers of theorem (2.1.6.) is not certainly true in general. To get this, 

We offer the previous counter example is given. 

2.7 Example  

If 𝑋 = {7,8,9}, 𝑇𝑥 = {∅ , {7}, {8}, {7,8}, 𝑋}, 
 𝑇𝑦 = {∅ , {7}, {8,9}, 𝑋},Therefore the self-function, since 𝑋 = 𝑌. 

𝑓: (𝑋, 𝑇𝑥) → (𝑋, 𝑇𝑦) be 𝑠𝑒𝑚𝑖-continuous, 

However no  𝛼-continuous. 

Every  continuous 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝛼 − 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢s function, so 𝑖𝑡 𝑖𝑠 semi 𝛼- 

     𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, On the other hand the convers is false in universal.  

2.8 Example  

If 𝑋 = {0,1,3,5}, and  𝑇𝑥 = {∅, {0}, 𝑋}, let 𝑦 = {2,4,6} , 𝑇𝑦 = {∅, {2}, 𝑌}. 

The  𝛼-open sets define on space 𝑋 are ;  

      𝑇(𝑥)
𝛼 = 𝑇𝑥 ∪ {{0,1}, {0,3}, {0,5}, {0,1,3}, {0,1,5}, {0,3,5}}, 

The  𝛼-open sets define on space 𝑌 are ; 𝑇𝑦
𝛼 = {∅, {2}, {2,4}, {2,6}, 𝑌},  

If  𝑓: 𝑋 → 𝑌,  define are 𝑓(𝑥1) = 𝑓(𝑥2) = 2 , 𝑓(𝑥3) = 4, 𝑓(𝑥4) = 6. 
Since  𝑓 is  𝛼-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 function, however it is  not 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 function. 

Because {2} is open in space 𝑌, as 𝑓−1({2}) = {0,1},  
But {0,1}is not open in Space 𝑋. 

To fined semi 𝜶-continuous ; 𝑆𝛼𝑂(𝑋) = 𝑇𝑥
𝛼, and  𝑆𝛼𝑂(𝑌) = 𝑇𝑦

𝛼 

Since 𝒇 is 𝒔𝒆𝒎𝒊 𝜶-continuous function, but it is not continuous, {2}is open, 

However 𝑓−1({2}) = {0,1}, is not open in 𝑇𝑥. 

Each  𝛼-continuous function is 𝑠𝑒𝑚𝑖 𝛼-continuous, however convers is not True In            

General. 
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2.9 Example   

Give  𝑋 = {4,6,8}, 𝑇𝑥 = {∅, {4}, {6}, {4,6}, 𝑋}, 
Then the  𝜶-𝒐𝒑𝒆𝒏 𝑠𝑒𝑡𝑠 𝑖𝑛 𝑠𝑝𝑎𝑐𝑒 𝑋 ; 𝑇𝑥

𝛼 = 𝑇𝑥 , 

As well as the𝒔𝒆𝒎𝒊 𝜶-𝒐𝒑𝒆𝒏 𝑠𝑒𝑡𝑠 𝑖𝑛 𝑠𝑝𝑎𝑐𝑒 𝑋, 𝑆𝛼𝑂(𝑋) = 𝑇(𝑥)
𝛼 ∪ {{6,8}, {4,8}}. 

Thus function define by 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  ;   𝑓(𝑥1) = 4 , 𝑓(𝑥2) = 𝑓(𝑥3) = 6, 
Therefore function  is 𝑠𝑒𝑚𝑖 𝛼-continuous , but it is not  𝛼-continuous. 

because, {6}is open set, then 𝑓−1({𝑤}) = {𝑤, 𝑒} ∉ 𝑇𝑥
𝛼 . 

To find a 𝑠𝑒𝑚𝑖 𝛼-continuous ;  𝑆𝛼𝑂(𝑋) = 𝑇𝑥
𝛼 ∪ {{𝑤, 𝑒}, {𝑞, 𝑒}}, 

Then 𝒇 is 𝒔𝒆𝒎𝒊 𝜶-   continuous, however it is not  𝜶-continuous. 

     

3 Continuity and Function relationship   

3.1 Theorem [4] 

let 𝑓 ∶ (X, 𝜏𝑥) → (Y, 𝜏𝑦)  and 𝑔 ∶ (Y, 𝜏𝑦) → (Z, 𝜏𝑧), are equally continuous  

function  then the composition  𝑔𝑜𝑓 ∶ (𝑋, 𝜏𝑥) → (𝑍, 𝜏𝑧) is continuous. 

Proof : 

If 𝑀 ∈ 𝜏𝑍,  then 𝑔−1(𝑀) ∈ 𝜏𝑦,  (by 𝑔 is continuous). Such that  𝑔−1(𝑀) ⊆ 𝑌 

Therefore 𝑓−1 (  𝑔−1(𝑀)) ∈ 𝜏𝑥.  (by 𝑓 be continuous) 

And  (𝑓−1𝑜𝑔−1 )(𝑀) ∈ 𝜏𝑋, 

Thus  (𝑔𝑜𝑓)−1(𝑀) ∈ 𝜏𝑥,            (by (𝑔𝑜𝑓)−1 = 𝑓−1𝑜𝑔−1) 

Then 𝑔𝑜𝑓 is composition.(continuous) 

3.2 Remark [4] 

The composition of finite number of continuous function is continuous. 

Explain : the composition of four or seven or fifty continuous function is  

continuous (if  𝑓, 𝑔, ℎ, 𝑘 are continuous, so 𝑘𝑜ℎ𝑜𝑔𝑜𝑓 is continuous…). 

If  𝑓:X→Y,  g:Y→Z, 𝑎𝑟𝑒  𝛼-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, and the arrangement function,  

𝒈𝒐𝒇 is not necessary 𝛂-continuous. 

3.3 Example   

Let   𝑋 = {0,3,5,7},   𝑇𝑥 = {∅, {5}, {0,5}, {0,3,5}, 𝑋}.  
And let 𝑌 = {2,4,6},   𝑇𝑦 = {∅, {6}, 𝑌}. If  𝛼-open sets in space 𝑋 ;  

𝑻(𝒙)
𝜶 = 𝑇𝑥 ∪ {{3,5}, {5,7}, {5,3,7}, {0,5,7}}.  .And the  𝛼-open sets in space 𝑌 ;    

𝑻(𝒚)
𝜶 = 𝑇𝑦 ∪ {{2,6}, {4,6}}.So f:X→Y ;   (𝑥1) = 𝑓(𝑥2) = 2, 𝑓(𝑥3) = 𝑓(𝑥4) = 4. 

And g:Y→X ;g (𝑦1)=g(𝑦2)= 5, g (𝑦3)= 0.  Therefore  𝑓, 𝑔 are  𝛼-continuous. 

𝑔𝑜𝑓 ∶ 𝑋 → 𝑋, 𝑔𝑜𝑓(0) = 𝑔𝑜𝑓(3) = 5,   𝑔𝑜𝑓(5) = 𝑔𝑜𝑓(7) = 0.The 𝑔𝑜𝑓, 
 is not 𝛼- continuous because; {5}is 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 of 𝑠𝑝𝑎𝑐𝑒 𝑋  ,  
(𝑔𝑜𝑓)−1(5) = {0,3}, but {0,3}be not 𝛼-𝑜𝑝𝑒𝑛 of 𝑠𝑝𝑎𝑐𝑒 𝑋. 
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3.4 Definition [5] 

If  f: X→ Y. Then 𝑓  is named   𝜶∗-continuous,   

for Each 𝑁 is 𝜶-𝒐𝒑𝒆𝒏 𝑠𝑒𝑡 of 𝒀,  thus  𝒇−𝟏 (𝑵)be  𝜶-𝒐𝒑𝒆𝒏 𝑠𝑒𝑡 of 𝑋. 

3.5 Theorem [1] 

A function  𝑓: 𝑋 →  𝑌. Therefore the following statement are equivalent . 

a) 𝑓 𝑖𝑠 𝑠𝑒𝑚𝑖 𝛼-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 
b) 𝑓 𝑖𝑠 𝑠𝑒𝑚𝑖 𝛼-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 at each  point 𝑥 ∈  𝑋 . 

 𝑷𝒓𝒐𝒐𝒇 ∶  
 a) ⟹ b) 

let 𝑓 ∶  𝑋 ⟶  𝑌 is a 𝑠𝑒𝑚𝑖 𝛼-continuous. 

And  𝑥 ∈ 𝑋 , 𝑁 is an 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 of 𝑌 having 𝑓(𝑥). 

Then 𝑥 ∈  𝑓−1(𝑁).  also 𝑓 is 𝑠𝑒𝑚𝑖 𝛼-continuous. 

So  𝑀 =  𝑓−1 (𝑁) is 𝑠𝑒𝑚𝑖 𝛼-𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 in 𝑋 holding ( 𝑥 ). 

therefore  𝑓(𝑀)  ⊂ 𝑁. 
b )⟹ a) 

if f : X⟶ Y is a 𝑠𝑒𝑚𝑖 𝛼-continous for all point in 𝑋. 

And N 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 in Y.  Let  𝑥 ∈  𝑓−1 (𝑁).   
Then 𝑁 is 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑌 containing 𝑓 (𝑥). 
By (b),  at hand is 𝑠𝑒𝑚𝑖 𝛼-𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑀 of 𝑋 containing  x. 

Since   𝑓 (𝑥 ) ∈ 𝑓 ( 𝑀 ) ⊆ 𝑁.  Therefor  M ⊆  𝑓−1 ( N ). 
Hence  𝑓−1 (N )= ∪{M :x∈ f^(-1)  ( N )  }. 
Then  𝑓−1 (N) is 𝑠𝑒𝑚𝑖 𝛼-𝑜𝑝𝑒𝑛 𝑖𝑛 𝑋. 

3.6 Remark  

The notions of continuity and  𝛼∗-continuity are independent,.  

3.7 Example 

If  𝑋 = { 1,2,3,4 }, 𝑇𝑋 = { ∅ , {1 }, {2 ,3 } , {1,2,3 }, 𝑋 },   𝑇(𝑋)
𝛼 = 𝑇𝑋. 

And   𝑌 = { 5, 6 7}, 𝑇𝑌 = { ∅ , {5}, 𝑌}, 

𝑇(𝑌)
𝛼 =  𝑇𝑌 ∪ {{5,6}, {5,7}}. 

If  f :X→Y  by  f (𝑥1)= 5 , f (𝑥2)= 6 , f ( 𝑥3 )=f (𝑥4 )= 7. 
Then 𝑓 is continuous,  However it is not  𝜶∗-continuous. 

Since  { 5,6 } ∈  𝜏(𝑌)
𝛼 , but 𝑓−1 { 5, 6 } = {1, 2 }  ∉  𝑇(𝑋)

𝛼 . 

Hence  𝑓 is continuous. And 𝑓 is not 𝜶∗-continuous function. 

3.8 Example     

 If 𝑋 = {1,2,3,4}, 𝑇𝑋 = {∅, {1}, 𝑋},  

 𝑇𝑥
𝛼 = 𝑇𝑥 ∪ {{1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}}.  
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𝑌 = {5,6,7},   𝑇𝑦 = {∅, {5}, 𝑌 },  

 𝑇𝑦
𝛼 =  𝑇𝑌 ∪ { {5,6}, {5,7} } , 

If   𝑓: 𝑋 →  𝑌, with f (𝑥1)= f (𝑥2)= 5 , f (𝑥3)= 6 , f (𝑥4)= 7 

Hence 𝑓 is 𝛼∗-continuous, but it's not continuous, Because{5}is open set in 𝑌, 

However  𝑓−1( { 5 } ) = { 1,2 } is not open in 𝑋. 

As a result 𝒇 is  𝜶∗-continuous,  however 𝒇 is not continuous . 

3.9  Proposition  [3],[1] 

1. A function 𝑓 ∶ (𝑋, 𝑇𝑥)  → (𝑌, 𝑇𝑦) is an open,  continuous and bijective,  then 𝑓 is 

𝛼∗-continuous.  

2. A meaning  𝑓 ∶ (𝑋, 𝑇𝑥) → (𝑌, 𝑇𝑦)𝑎𝑟𝑒 𝛼∗-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢s iff,  𝑓 ∶ (𝑋 , 𝑇𝑥
𝛼) → ( 𝑌 , 𝑇𝑦

𝛼) 

𝑎𝑟𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 

Proof : 

Let 𝐸 ∈  𝑇𝑥
𝛼, to prove  𝑓−1(E )∈  𝑇𝑥

𝛼 , Then 𝑓−1(𝐸) ⊆ 𝐼𝑛𝑡 𝐶𝑙 𝐼𝑛𝑡 𝑓−1(E) 

If  𝑥 ∈  𝑓−1(E)⟹ 𝑓 (x) ∈(E). and  𝑓(x)∈ 𝐼𝑛𝑡 𝐶𝑙 𝐼𝑛𝑡 𝐸    (since 𝐸 ∈ 𝑇𝑦
𝛼) . 

And so, there occurs 𝑁 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 of 𝑌. Since  𝑓(𝑥) ∈ 𝑁 ⊆ 𝐶𝑙 𝐼𝑛𝑡 𝐸. 

And 𝑥 ∈ 𝑓−1(𝑁) ⊆ 𝑓−1(𝑐𝑙 𝐼𝑛𝑡 𝐸), then 𝑓−1(𝑐𝑙 𝐼𝑛𝑡 𝐸) ⊆ 𝑐𝑙(𝑓−1(𝐼𝑛𝑡𝐸)). 

(then 𝒇−𝟏is continuous, which is same to 𝒇 is open and bijective)  

Thus  𝑥 ∈ 𝑓−1(𝑁) ⊆ 𝐶𝑙(𝑓−1(𝐼𝑛𝑡 𝐸)). 

Since 𝑥 ∈ 𝑓−1(𝑁) ⊆ 𝐶𝑙(𝑓−1𝐼𝑛𝑡𝐸)) ⊆ 𝐶𝑙(𝐼𝑛𝑡(𝑓−1(𝐸))),   (𝒇 is continuous) 

Therefore  𝑥 ∈ 𝑓−1(N)⊆ 𝐶𝑙(𝐼𝑛𝑡𝑓−1(N),  
But 𝑓−1(𝑁) is open set in 𝑋,  (𝒇 is continuous) 

Thus 𝑥 ∈ 𝐼𝑛𝑡 𝐶𝑙 (Int(𝑓−1(𝑁)),   ,As a result 𝑓−1(𝑁) ⊆ 𝐼𝑛𝑡 𝐶𝑙 Int(𝑓−1(𝑁)),  

Then 𝑓−1(N)∈ 𝑇𝑥
𝛼 . therefore 𝑓 is 𝛼∗-continuous function. 

To prove  (2) is obviously. 

3.10 Remark  [1] 

The concepts of continuity and 𝑠𝑒𝑚𝑖 𝛼 -continuity are independent,  

Example. 

3.11 Example    

If 𝑋 = {0,2,4,6}, 𝑇𝑥 = {∅, {0}, {0,4}, {2,4,6}, 𝑋}. Thus 𝑇𝑥
𝛼 = 𝑇𝑋,  

Let 𝑦 = {7,8,9}, 𝑇𝑦 = {∅, {7}, 𝑌}, 𝑇𝑦
𝛼 = 𝑇𝑦 ∪ {{7,8}, {7,9}}. 

Define f:X→Y, by 𝑓(𝑥1) = 7, 𝑓(𝑥2) = 8, 𝑓(𝑥3) = 𝑓(𝑥4) = 9. 
It is simply seen, 𝑓 be continuous, then  be no 𝑠𝑒𝑚𝑖 𝛼∗-continous, then  

{7,8} ∈ 𝑆𝛼𝑂(𝑌), but 𝑓−1({7,8}) = {0,2} ∉ 𝑆𝛼𝑂(𝑋). 
Therefore 𝑓 is continuous however it is not 𝑠𝑒𝑚𝑖 𝛼∗-continuous. 
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3.12 Example   

Let us equip that the sets X and Y of the above example with topologies, 

     𝑇𝑥 = {∅, {0}, 𝑋}, 𝑇𝑥
𝛼 = 𝑇𝑥 ∪ {{0,2}, {0,4}, {0,6}, {0,2,4}, {0,2,6}, {0,4,6}} 

𝑆𝛼𝑂(X)= 𝑇𝑥
𝛼 , 𝑇𝑦 ={∅,{7},Y}, 𝑇𝑦

𝛼 = 𝑇𝑦 ∪ {{7,8}, {7,9}}, 𝑆𝛼𝑂(𝑌) = 𝑇𝑦
𝛼 ,  

Then describe f:X→Y, by 𝑓(𝑥1) = 7, 𝑓(𝑥2) = 8, 𝑓(𝑥3) = 𝑓(𝑥4) = 9. 
It is simply told that 𝑓 is 𝑠𝑒𝑚𝑖 𝛼∗-continuous, but it is not continuous,  

Because {7}is 𝑜𝑝𝑒𝑛 of Y. then 𝑓−1({7}) = {0,2}be 𝑜𝑝𝑒𝑛 of X. 

Therefore 𝑓 is 𝑠𝑒𝑚𝑖 𝛼∗-continuous, however it is not continuous. 

3.13 Definition [17] 

If 𝑓 ∶  𝑋 →  𝑌 is a 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, thus 𝑓 𝑖𝑠 termed 𝜶∗ ∗-𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 if and only  

if, For each  𝑵  𝜶-𝒐𝒑𝒆𝒏 𝑠𝑒𝑡 of 𝒀 , thus 𝒇−𝟏(𝑵)  be 𝒐𝒑𝒆𝒏 𝑠𝑒𝑡 of 𝑿 .  

3.14 Example   

If 𝑋 = {5,3,1,0} , 𝑇𝑋 = {∅, {5,1}, {5,3,1}, 𝑋 },  

𝑇𝑥
𝛼 = 𝑇𝑋 ∪ {5,3,0}. With 𝑓 𝑖𝑠 Identity function. 

𝑓(𝑥1)  =  𝑓(𝑥2)  =  3, 𝑓(𝑥3) = 𝑓(𝑥4) = 1. 1. Thus 𝑓be  𝛼-𝑜𝑝𝑒𝑛 set in  𝑌, 

Because {5,3,1} is 𝑜𝑝𝑓(𝑥1)  =  𝑓(𝑥2)  =  3, 𝑓(𝑥3) = 𝑓(𝑥4) = 1then  

of X,  𝑓−1({5,3,1}) = 𝑋 an open in 𝑋. 

Hence f is 𝛼-open and open function. So 𝑓 is 𝛼∗∗-continuous. 

4 Conclusion 

For topological space, through our study between the relations, continuous, alpha-

continuous, and semi-alpha-continuous. we get a direct representation of their abbre-

viation ; the relationship continuous→alpha-continuous→semi-alpha continous. And 

prove ; 𝑓 ∶ (𝑋, 𝑇𝑥) → (𝑌, 𝑇𝑦)𝑎𝑟𝑒  alpha star-continuous ⟺ 𝑓 ∶ (𝑋 , 𝑇𝑥
𝛼) → ( 𝑌 , 𝑇𝑦

𝛼) 

are continuous. 
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Abstract—The aim of This work is to present new types of spaces, which  
are  𝐹1 space and 𝐹2 space, based on definition of new types of open sets, which 

is the feebly open set. we study there the basic properties and also obtained the 

effects between  𝐹1 space and 𝐹2 space and with the know space  𝑇1∕2 space and 

with closed and open sets. 

Keywords— 𝐹1 space and 𝐹2 space 

1 Introduction 

One of a topology's most important and fascinating concepts is the idea of feebly 

separation characteristics. In 1963, N.levin[1]  proposed  concept  of  a semi-open set. 

S.N Maheshwari and R.  Prasad[2],  used a semi-open set to  characterize and  inves-

tigate novel division  known as semi-detachment aphorisms. In 1975, N Levine char-

acterized the idea of   new  type  of topological space called 𝑇1∕2 in 1970 [3] (i.e. the 

space where the  closed  sets  and  summed up  sets  classes  meet).  Maheshwari S. N 

and Tapiu[4]   initiated  the  study of  feebly open in 1978. In 2019[5], Ail Khalaf 

Hussain Al-Hachami  presented the idea of some  feebly separation properties, it is 

demonstrated that every feebly-𝑇1  is semi-𝑇1  and every feebly-𝑇1∕2   is feebly-𝑇0 . 

Aaad Aziz Hussan Abdulla in  [6]  presented  the idea of semi-feebly open (sf-open) 

set. In 2021, Ail .Al kazaragy, Faik. Mayah and Ail Khala Hussain Al-Hachami [7]. 

introduced defined  semi-𝜃 -axioms. Zainab Awad Kadhum and Ail Khala Hussain[8] 

defied 𝑖𝑖 𝛿𝑔 –closed set in topological spaces, it is demonstrated that each  𝑖𝑖-𝑇3∕4  

space is 𝑖𝑖-𝑇1∕2  space  “the goal of  this study is to provide some characterizations of 

𝐹1 space and 𝐹2 space ”.   

mailto:heudtfodg@gmail.com
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2 Basic definition 

2.1 Definition[8] 

A subset 𝐴 of a topological space (𝑋,  ) is called feebly open (f-open) set if there 

exists an open set  𝑈 such that   𝑈 ⊆ 𝐴 ⊆ 𝑈
𝑠
.   

2.2 Definition [9] 

Let (𝑋, ) be a topological space. A subset 𝐴 of  𝑋 is said to be g-closed  

if  𝐴 ̅ ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is open set. 

2.3 Definition[3] 

Let (𝑋, ) be a topological space. A subset 𝐴 of  𝑋 is said to 𝑇1∕2 space 

if  each g-closed set is closed set. 

3  Characterization of 𝑭𝟏 space and 𝑭𝟐 space 

3.1 Definition 

Let (𝑋, ) be a topological space. A subset 𝐴 of 𝑋 is said to be  

(1)  𝐹∗-closed set if 𝐴 ̅ ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is f-open set.  

i.e. ∀ 𝑈 is f-open in 𝑋 (𝐴 ⊆ 𝑈                 𝐴 ̅ ⊆ 𝑈) 

(2)  𝐹∗-open set if the complement of  𝐴 in 𝑋 is 𝐹∗-closed set. 

3.2 Example 

Let 𝑋 =  𝑁, the set of all natural numbers,  = P(𝑥) be a topology defined on 𝑋. 

Let 𝐴 = {𝑥 ∈ 𝑁 : 𝑥  add number}, then 𝐴 = {𝑥 ∈ 𝑁 : 𝑥  add number}, thus the f-open 

sets contain 𝐴 is 𝐴. 

Hence 𝐴 ̅ ⊆ 𝐴, then 𝐴 is 𝐹∗-closed set. 

3.3 Proposition 

Every closed set is  𝐹∗-closed set. 

3.4 Remark 

The converse  [Proposition (3.3)] is not necessarily true as shown by the  

following example. 
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3.5 Example 

Let 𝑋 = {1, 2, 3},  = {𝑋, ∅, {1, 3}} be a topology defined on 𝑋. 

Let 𝐴 = {1, 2}, then 𝐴 = 𝑋, thus the f-open sets contain 𝐴 is only 𝑋 

It is clear 𝐴 is  𝐹∗-closed set but not closed. 

3.6 Proposition 

Every 𝐹∗-closed set is g-closed set. 

3.7 Remark 

The converse  [Proposition (3.6)] is not necessarily true as shown by the  

following example. 

3.8 Example 

Let 𝑋 = {1, 2, 3},  = {𝑋, ∅, {1}} be a topology defined on 𝑋. 

Let 𝐴 = {1, 3}, then 𝐴 = 𝑋, implies the f-open sets contain 𝐴 is 𝑋  

and  {1, 3}. It is clear 𝐴 ⊈ {1, 3} 

Hence 𝐴 is not  𝐹∗-closed set but 𝐴 is g-closed set since the open sets   

contain 𝐴 is only 𝑋, 𝐴 ⊆ 𝑋. 

3.9 Remark 

g-closed set is  𝐹∗-closed set if every f-open set is open set. 

3.10 Lemma 

Let (𝑋, ) is a topological space, if every closed set is open set then  

(1) every f-open set is f-closed set. 

(2) every f-open (f-closed) set is open set (closed) set. 

3.11 Theorem 

Let  (𝑋, ) be a topological space , then  = 𝑓 if and only if  every subset of  𝑋  

is 𝐹∗-closed set, where 𝑓 is the family  of closed sets in 𝑋. 

Proof. 

⟹ Let  = 𝑓 and  𝐴 ⊆ 𝑋 and  𝐴 ⊆ 𝑂, where 𝑂 is f-open set in 𝑋. 

Since 𝐴 ⊆ 𝑂, then 𝐴 ̅ ⊆ 𝑂 ̅, but �̅� = 𝑂.  

Then  𝐴 ̅ ⊆ 𝑂, implies 𝐴 is 𝐹∗- closed set. 
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⟸ Let every subset of 𝑋 is 𝐹∗- closed set 

Assume that 𝑂 ∈   then 𝑂 is f-open set  

Since 𝑂 ⊆ 𝑂, 𝑂 is 𝐹∗- closed set  

Hence  𝑂 ̅ ⊆ 𝑂 implies 𝑂 ̅ = 𝑂  

 Therefore 𝑂 ∈ 𝑓 

Thus  ⊂ 𝑓 (1) 

Assume that  𝐹 ∈ 𝑓, then  𝐹𝑐 ∈  

Hence  𝐹𝑐 is f-open set  

Since 𝐹𝑐 ⊂ 𝑋, implies 𝐹𝑐  is 𝐹∗- closed set 

But 𝐹𝑐 ⊆ 𝐹𝑐 and 𝐹𝑐 is f-open set  

So, 𝐹𝑐̅̅ ̅ ⊆ 𝐹𝑐, consequently 𝐹𝑐 ∈ 𝑓 

Therefore 𝐹 ∈  

Thus 𝑓 ⊂  (2) 

Then by (1) and (2), we have  = 𝑓. 

3.12 Remark 

Let (𝑋, ) is a topological space. If  = 𝑓 then every g-closed set is 𝐹∗-closed set. 

3.13 Theorem 

Let (𝑋,  ) be a topological space and  𝐴 ⊆ 𝑌 ⊆ 𝑋 and 𝑌 open set in 𝑋. If 

𝐴 is 𝐹∗- closed set in 𝑋 then 𝐴 is 𝐹∗- closed set in 𝑌. 

Proof. 

Let 𝐴 ⊆ 𝑂, 𝑂 is f-open in 𝑋 

Then 𝐴 ∩ 𝑌 ⊆ 𝑂 ∩ 𝑌 

Since 𝑌 is open set in 𝑋. 
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Hence 𝑂 ∩ 𝑌 is f-open in 𝑌. 

Since 𝐴 is 𝐹∗- closed set in 𝑋. 

So, 𝐴 ̅ ⊆ 𝑂.  

Therefore 𝐴 ̅ ∩ 𝑌 ⊆ 𝑂 ∩ 𝑌. 

But 𝐴 ̅𝑌 = �̅� ∩ 𝑌, such that 𝐴 ̅𝑌 is closure of 𝐴 in 𝑌. 

Thus 𝐴 is 𝐹∗- closed set in 𝑌 

3.14 Theorem 

If 𝐴 ⊆ 𝑌 ⊆ 𝑋  such that 𝑌 is open and closed in 𝑋, 𝐴 is 𝐹∗- closed set in  

𝑌 then 𝐴 is 𝐹∗- closed set in 𝑋. 

Proof. 

Let 𝐴 ⊆ 𝑂 and O is f-open in 𝑋 

Then 𝐴 ∩ 𝑌 ⊆ 𝑂 ∩ 𝑌 

Since 𝐴 ⊆ 𝑌 implies 𝐴 ⊆ 𝑂 ∩ 𝑌 

But 𝑌 is open set in 𝑋 

Hence 𝑂 ∩ 𝑌 is f-open in 𝑌 

Since 𝐴 is 𝐹∗- closed set in 𝑌 

Then 𝐴 ̅𝑌 ⊆ 𝑂 ∩ 𝑌 

We know  𝐴 ̅𝑌= 𝐴 ̅ ∩ 𝑌 

Since 𝐴 ⊆ 𝑌  implies 𝐴 ̅ ⊆ 𝑌 ̅  

But 𝑌 is closed set in 𝑋 

Therefore 𝐴 ̅ ⊆ 𝑌 

So, 𝐴 ̅ ⊂ 𝑂 ∩ 𝑌   

Then 𝐴 ̅ ⊆ 𝑂 
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Thus  𝐴 is 𝐹∗- closed set in 𝑋. 

3.15 Definition 

A topological space 𝑋 is called 𝐹1 space if and only if every g-closed  

set in 𝑋 is 𝐹∗- closed set. 

3.16 Example 

 Let 𝑋 = {1, 2, 3},  = {∅, 𝑋, {1}, {3}, {1, 3}} be a topology defined on 𝑋. 

Then g-closed on 𝑋 are  {∅, 𝑋, {2}, {1, 2}, {2, 3}}, 

𝐹∗- closed set on 𝑋 are {∅, 𝑋, {2}, {1, 2}, {2, 3}}.  

It is clear every g-closed set is 𝐹∗-closed set. 

3.17 Proposition 3.17 

Let 𝑋 be a topological space, if 𝑋 is 𝑇1

2

 space, then 𝑋 is 𝐹1 space. 

Proof. 

Assume that 𝐴 is g-closed set in 𝑋.  

Since 𝑋 is 𝑇1

2

  space, implies 𝐴 is closed set. 

Therefore, 𝐴 is 𝐹∗- closed set [Proposition (3.3)]. 

Then 𝑋 is 𝐹1 space. 

3.18 Remark 

 The converse  [Proposition (3.17)] is not necessarily true as shown in the  

Following example. 

3.19 Example 

Let 𝑋 = {1, 2, 3, 4},  = {∅, 𝑋, {3}, {1, 2}, {1, 2, 3}} be a topology 

 defined on 𝑋. 

The closed sets are {∅, 𝑋, {1, 2, 3}, {3, 4}, {4}}  

g-closed sets are {∅,𝑋,{2,3,4}, {1, 3, 4}, {2, 4}, {1, 4}, {1, 2, 4}, {3, 4},{4}}.  

𝐹∗- closed sets are {∅,𝑋,{2,3,4},{1, 3, 4}, {2, 4},{1, 4}, {1, 2, 4}, {3,4},{4}}. 

It is clear 𝑋 is 𝐹1 space since every g-closed set is  𝐹∗-closed set but not 𝑇1

2

 space 

since {2, 4} is g-closed set but not closed set. 

3.20 Lemma 

If 𝐴 ⊆ 𝑌 ⊆ 𝑋  such that 𝑌 is closed in 𝑋, 𝐴 is g- closed set in 𝑌  

then 𝐴 is g- closed set in 𝑋. 
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3.21 Theorem 

Let 𝑋 be a 𝐹1 topology space. If 𝑌 is an open and closed subspace then 𝑌  

is  𝐹1 space. 

Proof. 

Assume that 𝐴 is g-closed set in 𝑌 

Since 𝑌 is a closed subspace, implies 𝐴 is g-closed in 𝑋 [Lemma (3.20)]. 

But 𝑋 is 𝐹1 space. Then 𝐴 is  𝐹∗- closed set in 𝑋 

Since 𝑌 is an open subspace in 𝑋   

Thus 𝐴 is 𝐹∗- closed in 𝑌 [Theorem (3.13)]. 

Then  𝑌 is 𝐹1 space. 

3.22 Remark  

𝐹1 space does not hereditary property. 

3.23 Theorem 

If (𝑋,  ) be 𝐹1 space then every singleton is either 𝐹∗- closed or 𝐹∗- open. 

Proof. 

Let  𝑋 be  𝐹1 space 

Assume that 𝑥 ∈ 𝑋 and {𝑥} is not  𝐹∗- closed set  

Since 𝑋 is the only open set contain {𝑥}𝑐 then {𝑥}𝑐̅̅ ̅̅ ̅ ⊆ 𝑋 

Hence {𝑥}𝑐 g-closed set. 

Since 𝑋 is 𝐹1 space then {𝑥}𝑐 is  𝐹∗- closed set.  

Therefore, {𝑥} is  𝐹∗- open. 

3.24 Definition 

A topological space 𝑋 is called 𝐹2 space if and only if every f-open  

set in 𝑋 is open set. 

3.25 Example 

 Let 𝑋 = {1, 2, 3, 4},  = {∅, 𝑋, {1}, { 2}, {1, 2},{ 3, 4},{1, 3, 4},{2, 3, 4}} 

be a topology defined on 𝑋. 

The f-open sets are {∅, 𝑋, {1}, { 2}, {1,2}, { 3, 4}, {1, 3, 4},{2, 3, 4}.  

It is clear every f-open set in 𝑋 is open set. 

Then 𝑋 is 𝐹2 space. 

3.26 Proposition 

Every  𝐹2 space is 𝐹1 space. 

Proof. 

Assume that  𝑋 is 𝐹2 space  
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Then every f-open set is open set . 

Therefore, every g-closed set is  𝐹∗- closed set [Remark (3.9)]. 

Thus 𝑋 is 𝐹1 space. 

3.27 Remark 

Every  𝐹1 space is  𝐹2 if   = 𝑓. 

3.28 Theorem 

If (𝑋,  ) be 𝐹2 space then every f-closed set is f-open set. 

Proof. 

Assume that  𝑋 is 𝐹2 space  

Then  = 𝑓 

Therefore,  f-open set = f-closed set [Lemma (3.10)]. 

Hence  every f-closed set is f-open set. 

3.29 Theorem 

Let 𝑋 be 𝐹2 topological  space, if 𝑌 is an open subspace then 𝑌  

is  𝐹2 space. 

 Proof. 

Assume that 𝐴 is f-open set in 𝑌 

Since 𝑌 is an open subspace, implies𝐴 is f-open set in𝑋  
But 𝑋 is 𝐹2 space, then 𝐴 is open set in 𝑋 

Therefore, 𝐴 is open set in  𝑌 

Then  𝑌 is 𝐹2 space. 

3.30 Theorem  

If 𝑌 is 𝐹2 space and 𝑓 : 𝑋 ⟶ 𝑌 be continuous function, open and surjective,  

then 𝑋 is 𝐹2 space. 

Proof. 

Assume that  𝐵 is f-open set in 𝑋 

Since 𝑓 is continuous, open and surjective, implies 𝑓(𝐵) is f-open set in 𝑌 

But Y is 𝐹2 space, then (𝐵) is open set in 𝑌 

Since 𝑓 is continuous, then 𝑓−1(𝑓(𝐵)) is open set in 𝑋. 

But 𝑓 is surjective, then 𝑓−1(𝑓(𝐵)) = 𝐵  

Therefore, 𝑋 is 𝐹2 space. 
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4 Conclusion 

In this work, several properties of 𝐹1 space and 𝐹2 space were studied, and these 

properties, a relationship was drawn between 𝑇1∕2 space and  𝐹1space, there is also 

relationship between 𝐹1  space and  𝐹2 space. 
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Abstract— called f-normal space, which we studied and identified some of 

its properties as well as relationships with other sets, and we obtained some re-

sults that show the relationship between sets using theories obtained using the 

set from Style   (f-open). 

Keywords—Normal space and Og-normal space and f-normal space and ff-

normal space and f-fg-normal space 

1 Introduction 

In this chapter we are going to study other features for normal space: 

Og-normal space and f-normal space and ff-normal space and f-fg-normal space. 

As we know before in general way that said about a topological feature is heredi-

tary, if  and only if achieved for each subspace from a space had done. And said about  

a topological feature is weak hereditary if and only if achieved for each close sub-

space from a space had done.[1]. 

Now in particular, we asked the following question:- 

Let Ӽ be a topological space, and possesses any of the normal traits above and Y 

was subset from Ӽ, does sub space Y have the same feature that Ӽ had ?  

That is what we are going to justify throughout our study for features of the subset 

which clarified for each kinds of normal space as state above.  

A the beginning, we mention the following theorem which justify if  Ӽ was  nor-

mal space and Y was closed subset if  Ӽ then subspace Y is normal space .  

2 Preliminaries 

2.1 Definition 

1. Assume that  Ӽ is a topological space and A⊆Ӽ. The letter ¯A denotes the closur 

of A is defined by :- ¯A=∩{F⊆Ӽ;F is closed set and A⊆F} 

mailto:example@example.org
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2. Let  Ӽ is a topological space and A⊆Ӽ. The letter A^∘ denotes the interior of A is 

defined by:-  

A^∘=∪{G⊆Ӽ:G is open set and G⊆A}. 

3. A subset A of a topological space Ӽ, is called semi-open (s-open)set if there exists 

an open set O such that O⊆A⊆¯O. 

4. A subset A of a topological space Ӽ is called semi-closed (s-closed) set if  there ex-

ists a closed set O such that O^∘⊆A⊆O. 

5. A subset A of a topological space X is said to be feebly open set if there exists an 

open set U in X, such that U ⊆ A ⊆ ¯U^s, and the complement of feebly open set 

is called feebly closed set. 

6. Let Ӽ a topological space, Ӽ is said to be f-normal space for each  two disjoint 

closed set    A and B in Ӽ there exists are two disjoint f-open set , U  and  V in  Ӽ 

such that  A⊆U ,B⊆V 

2.2 Theorem [2] 

Let Ӽ be normal space and Y closed subset in Ӽ, then subspace Y is normal space. 

2.3 Remark 

Look at [3] which justify in the example if Ӽ is normal space and Y is sub set in Ӽ, 

is not necessary sub space Y normal space. Which can be said here the description of 

normality is not genetic description, in another word its weak genetic description. 

2.4 Remark 

If Ӽis og-normal space and Y is subset from Ӽ, then subspace Y is not necessary 

og-normal space, as showed that in the following example (2.5). if Y is g-closed sub-

set in Ӽ then subspace Y be og-normal space. 

2.5 Example 

Let Ӽ = {𝑎, 𝑏, 𝑐, 𝑑} and  

𝑇𝑥 = {𝑥, ∅, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎, 𝑐, 𝑑}, {𝑎}}  a topological space in Ӽ, and let 

 𝑌 = {𝑎, 𝑐, 𝑑}  ⊂ Ӽ 

And 𝑇𝑌 = {∅, 𝑌, {𝑎, 𝑐}, {𝑎, 𝑑}, {𝑎} a topological space in Y 

To proof  Ӽ is og-normal space g-closed set in     Ӽ =
{Ӽ, ∅, {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}, {𝑎, 𝑏, 𝑑}, 𝑎, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑}}. 

Let 𝐴 = Ӽ and 𝐵 = ∅ ⟹ 𝐴 ∩ 𝐵 = ∅ 

Let 𝑈 = Ӽ 𝑎𝑛𝑑 𝑉 = ∅ ⟹ 𝑈 ∩ 𝑉 = ∅ 

Thus 𝐴 ⊆ 𝑈 and 𝐵 ⊆ 𝑉  

Hence Ӽ is og-normal space  

To proof Y is og-normal space  

g-closed set in 𝑌 = {∅, 𝑌, {𝑑}, {𝑐}, {𝑐, 𝑑}} 
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Let 𝐴 = {𝑑} and 𝐵 = {𝑐}  ⟹ 𝐴 ∩ 𝐵 = ∅ (g-closed set in 𝑌) 

There is not exists two disjoint open set counting {d} and {c}, in 𝑇𝑌. 

Hence Y is not og-normal space 

And now we are introducing the following lemma which we need it to proof the 

 coming theorem. 

2.6 Lemma 

Let Ӽ be a topological space, if A⊆Y⊆Ӽ was and A g-closed set in Y was, and Y 

g-closed set in Ӽ, then A is going to be g-closed set in Ӽ Proof : Look [4]. 

We are going to introduce the following theorem which justify if Ӽ og-normal spac 

was, and Y g-closed subset was in Ӽ then subspace Y is going to be og-normal 

space:- 

2.7 Theorem 

Let Ӽ be og-normal space and Y is g-closed subset in Ӽ, then subspace Y is og-

normal space. Proof: Let Ӽ is og-normal space, And let A and B are two g-closed set 

in Y such that A∩B=∅ 

Hence, by lemma (3.2.5) 

A and B a two disjoint g-closed set in Ӽ 

Since Ӽ is og-normal space  

Hence, there exists two disjoint open set U and V in Ӽ 

Such that A⊆U and B⊆V 

Let U_1=Y∩U and V_1=Y∩V  

Hence U_1  and V_1 are two disjoint open set in Y.( relative topology ). 

Such that A⊆U_1 and B⊆V_1  

Hence, a subspace Y is og-normal space. 

Throughout the theorem (3.2.6) we can get the following corollary:- 

2.8 Corollary 

Let Ӽ be og-normal space and Y is closed subset in Ӽ then subspace Y is og-

normal space. 

2.9 Remark 

Let Ӽ be f-normal space and Y was subset in Ӽ, then subspace is not necessary f 

normal space, as justify in the following example (3.2.9). and if Y was closed and 

open set at the same time (clopen) in Ӽ, then subspace Y be f-normal space. We will 

clarify that in a later theorem 
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2.10 Example 

Let Ӽ = {𝑎, 𝑏, 𝑐, 𝑑} and  

𝑇𝑥 = {𝑥, ∅, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑑}, {𝑎, 𝑏, 𝑐}} a topological space in Ӽ. 

See (2.4) 

Hence Ӽ is f-normal space, 

Now teak 𝑌 = {𝑎, 𝑐, 𝑑} ⊂ Ӽ 

𝑇𝑌 = {𝑌, ∅, {𝑎}, {𝑎, 𝑑}, {𝑎, 𝑐}} a topological space in Y 

To proof  Y is f-normal space. 

f-open set in Y={𝑌, ∅, {𝑎}, {𝑎, 𝑐}, {𝑎, 𝑑}} 

now clearly 𝐴 𝑎𝑛𝑑 𝐵 are two closed set disjoint  

let 𝐴 = {𝑐} and 𝐵 = {𝑑}  

there is not exists two disjoint f-open set counting {c} and {d}, in 𝑇𝑌. 

Hence, subspace Y is not f-normal space. 

The following theorem justify if Ӽ is f-normal space and Y is subset closed  

and open  

set (clopen) at the same time in Ӽ then subspace Y is f-normal space. 

2.11 Theorem 

Let Ӽ be f-normal space and Y is closed and open subset at the same time in Ӽ, 

then subspace Y is f-normal space according to that subspace Y is f-normal space. 

Let Ӽ is f-normal space And let A and B are two closed set in Y such that A∩B=∅ 

Hence, 𝐴 and 𝐵 are two disjoint closed set in Ӽ, by [2]. 

Since Ӽ is f-normal space  

Thus there exists two disjoint f-open set 𝑈 and 𝑉 in Ӽ 

Such that 𝐴 ⊆ 𝑈 and 𝐵 ⊆ 𝑉 

And let 𝑈1 = 𝑌 ∩ 𝑈 and 𝑉1 = 𝑌 ∩ 𝑉  

Thus, by proposition (1.1.12). 

𝑈1 and 𝑉1 are two disjoint f-open set in Ӽ. 

Such that 𝐴 ⊆ 𝑈1 and 𝐵 ⊆ 𝑉1  

According to that subspace Y is f-normal space. 

2.12 Remark 

ff-normal space has the same feature as f-normal space, if Y is was any subset from 

Ӽ then subspace Y does not ff-normal space. If Y was closed and open subset at the 

same time in Ӽ, then subspace Y is ff-normal space.  

That we going to justify in a later theorem. 

2.13 Example 

From example(2.19) paragraph (2) 

Clearly, Ӽ is ff-normal space  

Now, teak 𝑌 = {𝑎, 𝑐, 𝑑} ⊂ Ӽ 
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𝑇𝑌 = {𝑌, ∅, {𝑎}, {𝑎, 𝑑}, {𝑎, 𝑐}} a topological space in Y 

f-open set in 𝑌 = {𝑌, ∅, {𝑎}, {𝑎, 𝑑}, {𝑎, 𝑐}} 

f-closed set in 𝑌 = {∅, 𝑌, {𝑐, 𝑑}, {𝑐}, {𝑑}} 

Now notice that 𝐴 = {𝑐} and 𝐵 = {𝑑} are two disjoint f-closed set in Y 

there is not exists two disjoint f-open set counting {c} and {d}, both of them in 

 a row. 

According to that subspace Y is not ff-normal space. 

Now, we are introducing the following lemma which we need it to proof in a  

later theorem. 

2.14 Lemma 

Let Ӽ be a topological space, if 𝐴 ⊆ 𝑌 ⊆ Ӽ and 𝐴 was f-closed set in Y and Y is  
closed and open set at the same time in Ӽ then 𝐴 is g-closed set in Ӽ. 
Proof: 
Assume that Y is closed and open(clopen) subset at the same time in Ӽ, 
Let 𝐴   f-closed set in Y 
To proof 𝐴 is f-closed set in Ӽ. 
Since 𝐴 is  f-closed set in Y 
Hence, there exist 𝐵 closed set in Y 
Such that (𝐵°)𝑌 ⊆ 𝐴 ⊆ 𝐵 
Since 𝐵∘ = (𝐵°)𝑌 ∩ 𝑌∘ by [5]. 
Therefore  𝐵∘ = (𝐵°)𝑌 ∩ 𝑌 (Y is open set in Ӽ), 
Thus  𝐵∘ = (𝐵°)𝑌 
Since 𝐵 is closed set in Y and Y is closed set in Ӽ, 
Hence  𝐵 is closed set in Ӽ. By [2] 
Then 𝐵∘ ⊆ 𝐴 ⊆ 𝐵  
Hence 𝐴 is f-closed set in Ӽ…….. 
The following theorem justify that if  Ӽ was ff-normal space and Y was open  

and close  

subset at the same time in Ӽ then subspace Y be ff-normal space.  

2.15 Theorem 

Let Ӽ ff-normal space and Y was open and close subset at  the same time in Ӽ  

then subspace Y is ff-normal space.  

Proof: 

Assume that Ӽ is ff-normal space  

Let it be  𝐴 and 𝐵 are two f-closed set in Y. such that  𝐴 ∩ 𝐵 = ∅ 

Hence, by lemma (2.14). 

𝐴 and 𝐵 are two disjoint f-closed set in Ӽ  

Since Ӽ is ff-normal space 

Hence there exists are two disjoint f-open set 𝑈 and 𝑉 in Ӽ  

Such that 𝐴 ⊆ 𝑈  and 𝐵 ⊆ 𝑉  
Let 𝑈1 = 𝑌 ∩ 𝑈 and  𝑉1 = 𝑌 ∩ 𝑉 
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Thus, by proposition (1.1.12) 

𝑈1 and 𝑉1 are two disjoint f-open set in Y 

Such that    𝐴 ⊆ 𝑈1 𝑎𝑛𝑑 𝐵 ⊆ 𝑉1  

Then, subspace Y is ff-normal space ……… 

2.16  Remark 

Let Ӽ be f-fg-normal space and Y is subset from Ӽ then subspace Y is not nec-
essary be f-fg-normal space at state in coming  example (2.17). But if Y is  fg-
open and close set at the same time in Ӽ then subspace Y is f-fg-normal space. 
And we will justify that in a later theorem. 

2.17  

From example (2.39) paragraph (2). 

Clear Ӽ is f-fg-normal space  

Now teak 𝑌 = {𝑎, 𝑐, 𝑑} ⊂ Ӽ  

It is also clear that Y subspace is not f-fg-normal space. 

Because {𝑐} and {𝑑} are  two disjoint fg-closed set, But, is not there exists are two 

disjoint f-open set counting {c} and {d}, both of them in a row. And now we are 

introducing lemma which we need it to prove the proof of the coming theorem. 

2.18 Lemma 

Let Ӽ be a topological space, and let 𝐵 ⊆ 𝑌 ⊆ Ӽ such that fg-closed and open set at 

the same time in Ӽ then 𝐵 is fg-closed set in Y if and only if 𝐵 is fg-closed set in Ӽ. 

Proof: See [6]. 

2.19 Theorem 

let Ӽ be f-fg-normal space and Y was fg-closed and open set at the same time in Ӽ,  

then subspace Y is f-fg-normal space.  

Proof: 
Assume that Ӽ is f-fg-normal space  
Let 𝐴 and 𝐵  are two fg-closed set in Y, 
Such that  𝐴 ∩ 𝐵 = ∅ 
Thus, by lemma (2.18) 
𝐴 and 𝐵 are two disjoint fg-closed set in Ӽ 
Since Ӽ is f-fg-normal space  
Hence there exists are two disjoint f-open set 𝑈 and 𝑉 in Ӽ. 

Such that 𝐴 ⊆ 𝑈 and 𝐵 ⊆ 𝑉   
Let 𝑈1 = 𝑌 ∩ 𝑈 and 𝑉1 = 𝑌 ∩ 𝑉 

Thus by proposition (1.1.12) 

𝑈1 𝑎𝑛𝑑 𝑉1 are two disjoint f-open set in Y  
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Such that 𝐴 ⊆ 𝑈1 𝑎𝑛𝑑 𝐵 ⊆ 𝑉1  

Then subspace Y is f-fg-normal space  

Through theorem (2.19), the following results can be obtained  

3 Conclusion 

1. Let Ӽ be f-fg-normal space and Y is f-closed and open subset at the same time then 

subspace Y is f-fg-normal space. 

2. Let Ӽ be f-fg-normal space and Y is closed and open subset at the same time in Ӽ 

then subspace Y is f-fg-normal space. 
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some conditions or without conditions. Consequently, the composition factors 

of soft pre-compact maps with soft pre-compact maps, almost soft pre-compact 

maps, and mildly soft pre-compact maps, A-almost soft compact maps, M-

mildly soft compact maps are studied based on the previous association be-
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1 Introduction 

 Molodtsov at the end of the twentieth century presented the soft set with indeter-

minate information [1].  Afterward, Maji et al.  [2] demonstrated numerous novel 

concepts on soft sets for instance equality, subset, and the complement of a soft set.  

In 2010, Babitha and Sunil gave the concept of a soft set relation and function, and 

they explained the composition of functions [3]. Shabir and Naz [4] 2011 originated 

soft topology and demonstrated some features of soft separation axioms.  Aygünoğlu 

and Aygün [5] established the conception of soft compact spaces. Hida [6] is 

equipped more powerful explanation for soft compact spaces than space as long as in 

[5].  Al-Shami et. al. [7] studied unprecedented forms of covering features known as 

almost soft compact.   

 Kharal and Ahmad [8] characterized soft maps and instituted principal features.  

Subsequently, Zorlutuna and Çakir [9] investigated the notion of soft continuous 

maps.  In continuation of their work, Addis et. al. in 2022 proposed a new definition 

for soft maps and investigate their features [8].   

https://doi.org/10.31185/wjcm.Vol1.Iss2.30
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 The principal intent of this work is to create a soft pre-compact map and to inves-

tigate its correlation between soft pre-compact maps, almost soft pre-compact maps, 

A-almost soft compact maps, A*-almost soft compact maps, mildly soft semi-

compact maps, M-mildly soft compact maps besides M*-mildly soft compact maps 

which are utilized from the relations between their spaces  under some conditions or 

without conditions. Consequently, the composition factors of soft pre-compact maps 

with soft pre-compact maps, almost soft pre-compact maps, and mildly soft pre-

compact maps, A-almost soft compact maps, M-mildly soft compact maps are studied 

based on the previous association between them. Many examples are given to explain 

the relationships between the topologies and relations of the soft set.  

2 Preliminaries 

 Definition [1]: Let 𝕎 be an initial universal set, 𝔼 be a set of parameters, and 

let ℙ(𝕎) to signas long asy the power set.  A pair (𝔽,𝔼) ) 𝔽𝔼 for short ) is 

known as a soft set as long as  𝔽 is a map of 𝔼 into the set of all subsets of the 

set 𝕎.  

 Definition [2]: Let 𝔽𝔼 be a soft set over 𝕎.  Subsequently: 

1. As long as 𝔽(𝕖) = ϕ, for all 𝕖 ∈ 𝔼, so 𝔽𝔼 is known as a null soft set and we sym-

bolize it by ∅̃.  

2. As long as 𝔽(𝕖) = 𝕎, for all 𝕖 ∈ 𝔼, so 𝔽𝔼is known as an absolute soft set and we 

symbolize it by �̃�.  

 Definition [8]: Let S(𝕎,𝔼) with S(𝕄,𝕂) are families of all soft sets over 𝕎 

and  𝕄 , one by one. The map 𝝋𝝍  is known as a soft map from 𝕎  to 𝕄 , 

indicated by 𝝋𝝍: S(𝕎,𝔼) → S(𝕄,𝕂), where 𝝋: 𝕎→ 𝕄 and 𝝍:𝔼→𝕂 are two 

maps.  

1. Let 𝔽𝔼  S(𝕎,𝔼), therefore the image of 𝔽𝔼 under the soft map 𝜑𝜓 is the soft set 

over 𝕄 indicated by𝜑𝜓𝔽𝔼 and defined by  

    𝜑𝜓(𝔽𝔼)(𝕜)=  {
∪𝕖𝜓−1(𝕜)∩𝔼  𝜑(𝔽(𝕖)), as long as  𝜓−1(𝕂) ∩ 𝔼 ≠ ∅;

∅       ,                                          𝑜𝑡ℎ𝑟𝑒𝑤𝑖𝑠𝑒.
 (  Let 𝔾𝕂   

S(𝕄,𝕂), therefore the pre-image of  𝔾𝕂 under the soft map 𝜑𝜓 is the soft set over 𝕎 

indicated by 𝜑𝜓
−1 𝔾𝕂 and  defined by  

                       𝜑𝜓
−1( 𝔾𝕂)(𝕖)= {

𝜑−1( 𝔾𝒦(𝜓(𝕖))), as long as  𝜓(𝕖)𝕂;

∅       ,                        otherwise.
 

The soft map 𝜑𝜓is known as injective, as long as 𝜑 and 𝜓are injective. The soft 

map 𝜑𝜓is known as surjective, as long as 𝜑 and 𝜓 are surjective. 
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 Definition[4]: Let𝕋 is a family of soft sets over 𝕎, 𝔼 be a set of parameters. 

So 𝕋 is known as a soft topology on 𝕎 as long as the subsequent is satisfied: 

1. �̃� and   𝕎 ̃  are in 𝕋.   

2. the union of any number of soft sets in 𝕋 is in 𝕋. 

3. the intersection of any two soft sets in 𝕋 is in 𝕋. 

The triple (𝕎, 𝕋, 𝔼) is known as a soft topological space (𝒮𝒯𝒮 for short) over 𝕎. 

The members of 𝕋 are known as the soft open sets in 𝕎.  A soft set 𝔽
𝔼

over 𝕎 is 

known as a soft closed set in  𝕎, as long as its relative complement 𝔽
𝔼
′  belongs to 𝕋.  

 Definition[4]: Let 𝔽
𝔼

 be a non-null soft subset of (𝕎, 𝕋, 𝔼)  subsequently 

𝕋𝔽={𝔽
𝔼

∩ 𝔾
𝔼

, ∀𝔾
𝔼

∈ 𝕋} is known as relative 𝓢𝓣𝓢 on 𝔽
𝔼

 and (𝔽
𝔼

, 𝕋𝔽, 𝔼) is 

known as a soft subspace of (𝕎, 𝕋, 𝔼).  

 Definition [15 ]: A soft subset 𝔽
𝔼

of (𝕎, 𝕋, 𝔼)is known as soft pre-open as 

long as 𝔽
𝔼

⊆̃ 𝒊𝒏𝒕(𝒄𝒍𝔽
𝔼

)  with its relative complement is known as soft pre-

closed.  

 Definition [9]: Let (𝕎, 𝕋, 𝔼) be a 𝓢𝓣𝓢 over 𝕎, 𝔾
𝔼
be a soft set over 𝕎, and 𝔁 

∈ 𝕎.  Subsequently, 𝔾
𝔼

 is known as a soft neighborhood of 𝔁𝔼, as long as 

there exists a soft open set 𝔽
𝔼
 such that 𝔁𝔼 ∈ 𝔽

𝔼
𝔾

𝔼
.  

 Definition[10]: Let (𝕎, 𝕋, 𝔼)and (𝕄,𝕋′,𝔼)be two 𝓢𝓣𝓢, 𝓛 : (𝕎, 𝕋, 𝔼)→ (𝕄, 

𝕋′,𝔼)be a soft map.  For each soft neighborhood 𝔾
𝔼
of  𝓛 (𝔁𝔼), as long as there 

exists a soft neighborhood 𝔽
𝔼

of 𝔁𝔼, such that 𝓛(𝔽
𝔼

) 𝔾
𝔼

, subsequently 𝓛 is 

known as a soft continuous map at 𝔁𝔼. As long as 𝓛 is a soft continuous map 

for all 𝔁𝔼, subsequently, 𝓛 is known as a soft continuous map.  

 Definition [14] :A soft subset 𝔽𝔼 of 𝓢𝓣𝓢 (𝕎, 𝕋, 𝔼) is said to be: 

1.  A soft pre-clopen provided that it is soft pre-open and soft pre-closed, 

2.  A soft pre-dense provided that 𝑐𝑙𝔽
𝔼

=  𝕎 

 Definition [14]: 

1. The collection {(𝔽
𝔼

 𝑖: 𝑖 ∈ 𝐼} of soft pre-open sets is known as a soft pre-open cover 

of an 𝒮𝒯𝒮 (𝕎, 𝕋, 𝔼)  as long as 𝕎 =∪̃i∈I 𝔽𝔼
 𝑖.    

2. An STS (𝕎, 𝕋, 𝔼) is known as a soft pre-compact space (𝒮𝒫-compact space for 

short) as long as each soft pre-open cover of 𝕎 has a finite sub-cover of 𝕎.  
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 Definition [14]: A 𝓢𝓣𝓢 (𝕎, 𝕋, 𝔼)is known as almost 𝓢𝓟-compact space as 

long as each soft pre-open cover of  𝕎 has a finite sub-cover such that the soft 

pre-closures whose members cover 𝕎.  

 Definition [14]: An 𝓢𝓣𝓢 (𝕎, 𝕋, 𝔼)is known as mildly 𝓢𝓟-compact space as 

long as each soft pre-clopen cover of 𝕎  has a finite soft subcover 𝕎.  

 Proposition [14]: Each 𝓢𝓟-compact space is an almost 𝓢𝓟-compact.   

 Proposition [14]: Each almost 𝓢𝓟-compact space is a mildly 𝓢𝓟-compact.  

 Theorem : Consider (𝕎, 𝕋, 𝔼)has a soft pre-base consisting of soft pre-clopen 

sets. Subsequently, (𝕎, 𝕋, 𝔼)is 𝓢𝓟-compact as long as and only as long as it is 

mildly 𝓢𝓟-compact.  

 Theorem [14]: As long as 𝔾𝔼 is an 𝓢𝓟-compact subset of 𝕎 and 𝔽𝔼is a soft 

pre-closed subset of 𝕎 subsequently 𝔾𝔼 ∩  𝔽𝔼 is 𝓢𝓟-compact.  

 Theorem [14]: As long as 𝔾𝔼is an almost (resp. a mildly) 𝓢𝓟-compact subset 

of 𝕎𝓔  and 𝔽𝔼 is a soft pre-clopen subset of 𝕎, subsequently 𝔾𝔼 ∩  𝔽𝔼 is an 

almost (resp. a mildly) 𝓢𝓟-compact.  

 Proposition [11]: Let (𝕎, 𝕋, 𝔼) be a 𝓢𝓣𝓢 and 𝔽𝔼 be any soft set over 𝕎.β be 

an open base of  𝕋 subsequently 𝛃𝔽𝔼
 = {𝔾𝔼 ∩̃ 𝔽𝔼:𝔾𝔼∈ β} is an open base of 

𝕋𝔽𝔼
.  

 Definition [14]: A collection 𝛃 of soft pre-open sets is known as a soft pre-

base of (𝕎, 𝕋, 𝔼)as long as each soft pre-open subset of 𝕎 can be written as a 

soft union of members of 𝛃.  

 Theorem [13]: Let (𝕎, 𝕋, 𝔼) be a 𝓢𝓣𝓢 each open soft set is pre-open soft.  

 Proposition : Each soft open base is a soft pre-open base.  

Proof: Let (𝕎, 𝕋, 𝔼)be a 𝒮𝒯𝒮 and Let 𝛽be a soft open base. thus,𝒱 is a soft open 

set, ∀ 𝒱 ∈ 𝛽.  Theorem (2. 11) 𝒱 is a soft pre-open set, ∀ 𝒱 ∈ 𝛽. 
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3 soft 𝓢𝓟-compact map 

 Definition: let (𝕎, 𝕋, 𝔼)and (𝕄,𝕋′ ,𝔼)be two 𝓢𝓣𝓢 and let, 𝓛 :(𝕎, 𝕋, 𝔼) ⟶ 

(𝕄,𝕋′ ,𝔼)be a soft map. then, 𝓛 is called a 𝓢𝓟-compact map, if it is a soft 

surjective continuous map, and if the pre-image of each 𝓢𝓟-compact subset of 

𝕄 is a 𝓢𝓟-compact subset of 𝕎. 

 Example: Let 𝕎 = ℝ, 𝔼={0} and 𝕋={ ∅̃ , �̃�,𝔾𝔼} are 𝓢𝓣𝓢 on 𝕎 such that 

𝔾(𝟎) = (−𝟏,1). A map 𝓛: (𝕎, 𝕋, 𝔼) ⟶ (𝕄,𝕋′,𝔼) such that 𝓛(𝔁𝕖) = −𝔁𝕖, 

∀ 𝔁 ∈ 𝕎, therefore 𝓛 is a 𝓢𝓟-compact map. 

 Definition: let (𝕎, 𝕋, 𝔼)and (𝕄 ,𝕋′ ,𝔼)be two 𝓢𝓣𝓢 and let, 𝓛:(𝕎, 𝕋, 𝔼) ⟶ 

(𝕄,𝕋′,𝔼)be a soft map. then, 𝓛 is called an almost 𝓢𝓟-compact map, if it is a 

soft surjective continuous map, and if the pre-image of each almost 𝓢𝓟 -

compact subset of 𝕄 is an almost 𝓢𝓟-compact subset of 𝕎. 

 Example: Let 𝕎 = {𝔁 ,  𝔂 ,  𝔃, 𝓱 }, 𝔼 = {𝕖𝟏 ,  𝕖𝟐 }and  𝕋 = { ∅̃ , �̃� ,  𝔽𝔼 ,  

𝔾𝔼, ℍ𝔼 , 𝔻𝔼, 𝕂𝔼  , 𝕄𝔼} where 𝔽𝔼= {( 𝕖𝟏,{𝔂}),(𝕖𝟐 , ∅)},𝔾𝔼={(𝕖𝟏, ∅),(𝕖𝟐, 𝓱)}, 

𝔻𝔼  ={(𝕖𝟏 , ∅ ),( 𝕖𝟐 ,{ 𝔂 ,  𝔃})},ℍ𝔼 ={(𝕖𝟏 , ∅ ),(𝕖𝟐 ,{  𝔂 ,  𝓱})} 𝕂𝔼 ={( 𝕖𝟏 ,{  𝔂 

, 𝔃, 𝓱}),(𝕖𝟐, ∅)}, 𝕄𝔼= {(𝕖𝟏 ,{𝔁, 𝔂 ,𝓱}),(𝕖𝟐, ∅)}. 

Define a soft  mapping  𝓛: (𝕎, 𝕋, 𝔼) ⟶ (𝕎, 𝕋, 𝔼) by 

𝓛(𝕖𝟏 ,{ 𝔁} )= (𝕖𝟏 ,{ 𝔁} ),  𝓛 ( 𝕖𝟐 ,{ 𝔁 })= (𝕖𝟐 ,{ 𝔁} ), 𝓛(𝕖𝟏 ,{ 𝔂} )= (𝕖𝟏 ,{ 𝔃} ), 

𝓛 ( 𝕖𝟐 ,{ 𝔂 })= (𝕖𝟐 ,{ 𝔃} ), 𝓛(𝕖𝟏 ,{ 𝔃} ) = (𝕖𝟏 , { 𝔂}  ) ,  𝓛 ( 𝕖𝟐 ,{ 𝔃 })= (𝕖𝟐 ,{ 𝔂} ),  

𝓛(𝕖𝟏 ,{ 𝓱} )= (𝕖𝟏 ,{ 𝓱} ),  𝓛 ( 𝕖𝟐 ,{ 𝓱 })= (𝕖𝟐 ,{ 𝓱} ). Then 𝓛  is continuous and 

surjective mapping , Also 𝓛 is an almost 𝓢𝓟-compact map.   

 Definition: let (𝕎, 𝕋, 𝔼)and (𝕄 ,𝕋′ ,𝔼)be two 𝓢𝓣𝓢 and let, 𝓛:(𝕎, 𝕋, 𝔼) ⟶ 

(𝕄,𝕋′,𝔼)be a soft map. then, 𝓛 is called a mildly 𝓢𝓟-compact map, if it is a 

soft surjective continuous map, and if the pre-image of each mildly 𝓢𝓟 -

compact subset of 𝕄 is a mildly 𝓢𝓟-compact subset of 𝕎. 

 Example: Let 𝕎 = {𝓶 ,  𝔂 ,  𝔃, 𝓱 , 𝓥 }, 𝔼 = {𝕖𝟏 ,  𝕖𝟐 }. Define a mapping  

𝓛: (𝕎, 𝕋𝐝𝐢𝐬, 𝔼)  ⟶  (𝕎, 𝕋𝐝𝐢𝐬, 𝔼)  by 𝓛 ( 𝔁𝕖) =  𝔁𝕖  for all 𝔁𝕖 ∈  𝕎 . Then 𝓛  is 

continuous, surjective. Also is a mildly 𝓢𝓟-compact map. 
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 Definition: let (𝕎, 𝕋, 𝔼)and (𝕄 ,𝕋′ ,𝔼)be two 𝓢𝓣𝓢 and let, 𝓛:(𝕎, 𝕋, 𝔼) ⟶ 

(𝕄,𝕋′,𝔼)be a soft map. then, 𝓛 is called A-almost 𝓢𝓟-compact map, if it is a 

soft surjective continuous map, and if the pre-image of each almost 𝓢𝓟 -

compact subset of 𝕄 is a 𝓢𝓟-compact subset of 𝕎. 

 Definition: let (𝕎, 𝕋, 𝔼)and (𝕄 ,𝕋′ ,𝔼)be two 𝓢𝓣𝓢 and let, 𝓛:(𝕎, 𝕋, 𝔼) ⟶ 

(𝕄,𝕋′,𝔼)be a soft map. then, 𝓛 is called A*-almost 𝓢𝓟-compact map, if it is a 

soft surjective continuous map, and if the pre-image of each 𝓢𝓟-compact 

subset of 𝕄 is an almost 𝓢𝓟-compact subset of 𝕎. 

 Definitio: let (𝕎, 𝕋, 𝔼)and (𝕄 ,𝕋′ ,𝔼 )be two 𝓢𝓣𝓢  and let, 𝓛 :(𝕎, 𝕋, 𝔼) ⟶ 

(𝕄,𝕋′,𝔼)be a soft map. then, 𝓛 is called M-mildly 𝓢𝓟-compact map, if it is a 

soft surjective continuous map, and if the pre-image of each mildly 𝓢𝓟 -

compact subset of 𝕄 is a 𝓢𝓟-compact subset of 𝕎. 

 Definition: let (𝕎, 𝕋, 𝔼)and (𝕄 ,𝕋′ ,𝔼)be two 𝓢𝓣𝓢 and let, 𝓛:(𝕎, 𝕋, 𝔼) ⟶ 

(𝕄,𝕋′,𝔼)be a soft map. then, 𝓛 is called M*-mildly 𝓢𝓟-compact map, if it is a 

soft surjective continuous map, and if the pre-image of each 𝓢𝓟-compact 

subset of 𝕄 is a  mildly 𝓢𝓟-compact subset of 𝕎. 

 Theorem: Every A-almost 𝓢𝓟-compact map is a 𝓢𝓟-compact map.  

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an A-almost 𝒮𝒫-compact map. T.P ℒ is a 

𝒮𝒫-compact map. let 𝔾𝔼  be a 𝒮𝒫-compact set in 𝕄. 𝔾𝔼   is an almost 𝒮𝒫-compact set 

in 𝕄 by Proposition 2.13,. Now  ℒ−1(𝔾𝔼)  is a 𝒮𝒫-compact set in 𝕎 since ℒ soft A-

almost 𝒮𝒫-compact map. Therefore ℒ is a 𝒮𝒫-compact map.  ∎ 

 Theorem : Every A-almost 𝓢𝓟-compact map is an almost 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an A-almost 𝒮𝒫-compact map. T.P ℒ is 

an almost 𝒮𝒫 -compact map. let 𝔾𝔼  be an almost 𝒮𝒫 -compact set in  𝕄 . Now 

 ℒ−1(𝔾𝔼)  is a 𝒮𝒫-compact set in 𝕎. since ℒ soft A-almost 𝒮𝒫-compact map, now 

 ℒ−1(𝔾𝔼) is an almost 𝒮𝒫-compact set by Proposition 2.13, Therefore ℒ is an almost 

𝒮𝒫-compact map. ∎   

 Theorem: Every A-almost 𝓢𝓟-compact map is A*-almost 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an A-almost 𝒮𝒫-compact map. T.P ℒ is 

A*-almost 𝒮𝒫-compact map. let 𝔾𝔼  be a 𝒮𝒫-compact set in 𝕄. 𝔾𝔼 be an almost 𝒮𝒫-

compact set in 𝕄  by Proposition 2.13. Now  ℒ−1(𝔾𝔼)  is a 𝒮𝒫-compact set in 𝕎 

since ℒ soft A-almost 𝒮𝒫-compact map  ℒ−1(𝔾𝔼) is an almost soft compact set Prop-

osition 2.13. Therefore ℒ is A*-almost 𝒮𝒫-compact map. ∎   
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 Theorem: Every A-almost 𝓢𝓟-compact map is M*-mildly 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an A-almost 𝒮𝒫-compact map. T.P ℒ is 

an M*-mildly 𝒮𝒫-compact map. let 𝔾𝔼  be a 𝒮𝒫-compact set in 𝕄. 𝔾𝔼  be an almost 

𝒮𝒫-compact set in 𝕄  by Proposition 2.13. Now  ℒ−1(𝔾𝔼)  is a 𝒮𝒫-compact set in 𝕎 

since ℒ soft A-almost soft compact map  ℒ−1(𝔾𝔼) is a mildly 𝒮𝒫- compact set in 𝕎 

by Proposition 2.13and Proposition 2.14. Therefore ℒ  is M*-mildly 𝒮𝒫 -compact 

map.∎   

 Theorem: Every A*-almost 𝓢𝓟-compact map is M*-mildly 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an A*-almost 𝒮𝒫-compact map. T.P ℒ is 

an M*-mildly 𝒮𝒫-compact map. let 𝔾𝔼  be a 𝒮𝒫-compact set in 𝕄. ℒ−1(𝔾𝔼)  is an 

almost 𝒮𝒫 -compact set in 𝕎  since ℒ  is a soft A*-almost 𝒮𝒫 -compact map. now 

 ℒ−1(𝔾𝔼) is a mildly 𝒮𝒫-compact set in 𝕎 by Proposition 2.14, Therefore ℒ  is an 

M*-mildly 𝒮𝒫-compact map.∎   

 Theorem: Every M-mildly 𝓢𝓟-compact map is a 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an M-mildly 𝒮𝒫-compact map. T.P ℒ is a 

𝒮𝒫-compact map. let 𝔾𝔼  be a 𝒮𝒫-compact set in 𝕄. By Proposition 2.13and Proposi-

tion 2.14 𝔾𝔼 is a mildly 𝒮𝒫-compact set in 𝕄  ℒ−1(𝔾𝔼)  is a 𝒮𝒫-compact set in 𝕎 

since ℒ is soft M-mildly 𝒮𝒫-compact map. Therefore ℒ is a  𝒮𝒫-compact map.∎   

 Theorem: Every M-mildly 𝓢𝓟-compact map is an almost 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an M-mildly 𝒮𝒫-compact map. T.P ℒ is 

an almost 𝒮𝒫-compact map. let 𝔾𝔼  be an almost 𝒮𝒫-compact set in 𝕄. By Proposi-

tion 2.14 𝔾𝔼 is a mildly 𝒮𝒫-compact set in 𝕄. ℒ−1(𝔾𝔼)  is a 𝒮𝒫-compact set in 𝕎 

since ℒ is a soft M-mildly 𝒮𝒫-compact map. by Proposition 2.13 ℒ−1(𝔾𝔼) is an al-

most 𝒮𝒫-compact set. Therefore ℒ is an almost 𝒮𝒫-compact map.∎   

 Theorem: Every M-mildly 𝓢𝓟-compact map is a mildly 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an M-mildly 𝒮𝒫-compact map. T.P ℒ is a 

mildly 𝒮𝒫-compact map. let 𝔾𝔼  be a  mildly 𝒮𝒫-compact set in 𝕄. ℒ−1(𝔾𝔼)  is a 𝒮𝒫-

compact set in 𝕎  since ℒ  is a soft M-mildly 𝒮𝒫 - compact map. by Proposition 

2.13and Proposition 2.14, ℒ−1(𝔾𝔼)  is a mildly 𝒮𝒫 -compact set. Therefore ℒ  is a 

mildly 𝒮𝒫-compact map.∎   

 Theorem : Every M-mildly 𝓢𝓟-compact map is A-almost 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an M-mildly 𝒮𝒫-compact map. T.P ℒ is 

an A-almost 𝒮𝒫-compact map. let 𝔾𝔼  be an almost 𝒮𝒫-compact set in 𝕄. By Proposi-

tion 2.14 𝔾𝔼 is a mildly 𝒮𝒫-compact set in 𝕄. ℒ−1(𝔾𝔼)  is a 𝒮𝒫-compact set in 𝕎 
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since ℒ is a soft M-mildly soft compact map. Therefore ℒ is an A-almost 𝒮𝒫-compact 

map.∎   

 Theorem :Every M-mildly 𝓢𝓟-compact map is A*-almost 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an M-mildly 𝒮𝒫-compact map. T.P ℒ is an 

A*-almost 𝒮𝒫 -compact map. let 𝔾𝔼  be a 𝒮𝒫 -compact set in  𝕄 . By Proposition 

2.13and Proposition 2.14 𝔾𝔼  is a mildly 𝒮𝒫-compact set in 𝕄. ℒ−1(𝔾𝔼)  is a 𝒮𝒫-

compact set in 𝕎 since ℒ is a soft M-mildly 𝒮𝒫-compact map. By Proposition 2.13 

ℒ−1(𝔾𝔼)   is an almost 𝒮𝒫 -compact set in 𝕎 . Therefore ℒ  is an A*-almost 𝒮𝒫 -

compact map.∎   

 Theorem: Every M-mildly 𝓢𝓟-compact map is an M*-mildly 𝓢𝓟-compact 

map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an M-mildly 𝒮𝒫-compact map. T.P ℒ is an 

M*-mildly 𝒮𝒫 -compact map. let 𝔾𝔼  be a 𝒮𝒫 -compact set in  𝕄 .By Proposition 

2.13and Proposition 2.14 𝔾𝔼  is a mildly 𝒮𝒫-compact set in 𝕄. ℒ−1(𝔾𝔼)  is a 𝒮𝒫-

compact set in 𝕎  since ℒ  is a soft M-mildly soft compact map. By Proposition 

2.13and Proposition 2.14, ℒ−1(𝔾𝔼)  is a mildly 𝒮𝒫-compact set in 𝕎. Therefore ℒ is 

an M*-mildly 𝒮𝒫-compact map.∎   

 Theorem: Every a mildly 𝓢𝓟-compact map is  an M*-mildly 𝓢𝓟-compact 

map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′ , 𝔼) be a mildly 𝒮𝒫-compact map. T.P ℒ is an 

M*-mildly 𝒮𝒫 -compact map. let 𝔾𝔼  be a 𝒮𝒫 -compact set in  𝕄 .By Proposition 

2.13and Proposition 2.14 𝔾𝔼 is a mildly 𝒮𝒫-compact set in 𝕄. ℒ−1(𝔾𝔼)  is a mildly 

𝒮𝒫-compact set in 𝕎 since ℒ is a mildly 𝒮𝒫-compact map. Therefore ℒ is an M*-

mildly 𝒮𝒫-compact map.∎   

 Theorem :Every an almost 𝓢𝓟-compact map is  an A*-almost 𝓢𝓟-compact 

map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an almost 𝒮𝒫-compact map. T.P ℒ is an 

A*-almost 𝒮𝒫 -compact map. let 𝔾𝔼  be a 𝒮𝒫 -compact set in  𝕄 .By Proposition 

2.13 𝔾𝔼 is an almost 𝒮𝒫-compact set in 𝕄. ℒ−1(𝔾𝔼)  is an almost 𝒮𝒫-compact set in 

𝕎 since ℒ is an almost 𝒮𝒫-compact map. Therefore ℒ is an A*-almost 𝒮𝒫-compact 

map.∎   

 Theorem: Every 𝓢𝓟-compact map is A*-almost a 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼)  ⟶ (𝕄 , 𝕋′ , 𝔼) be a 𝒮𝒫 -compact map. T.P ℒ  is an A*-

almost 𝒮𝒫 -compact map. let 𝔾𝔼  be a 𝒮𝒫 -compact set in  𝕄 .  ℒ−1(𝔾𝔼)   is a 𝒮𝒫 -
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compact set in 𝕎 since ℒ is a soft compact map. By Proposition 2.13 ℒ−1(𝔾𝔼)  is an 

almost 𝒮𝒫-compact set in 𝕎. Therefore ℒ is an A*-almost 𝒮𝒫-compact map.∎   

 Theorem: Every a 𝓢𝓟-compact map is an M*-mildly 𝓢𝓟-compact map. 

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄 , 𝕋′ , 𝔼) be a 𝒮𝒫-compact map. T.P ℒ  is an M*-

mildly 𝒮𝒫 -compact map. let 𝔾𝔼  be a 𝒮𝒫 -compact set in  𝕄 .  ℒ−1(𝔾𝔼)   is a 𝒮𝒫 -

compact set in 𝕎 since ℒ is a 𝒮𝒫-compact map. By Proposition 2.13and Proposition 

2.14  ℒ−1(𝔾𝔼)  is a mildly 𝒮𝒫-compact set in 𝕎. Therefore ℒ is an M*-mildly 𝒮𝒫-

compact map.∎    

 Theorem: Each 𝓢𝓟-compact map is a mildly 𝓢𝓟-compact map when the co-

domain has a soft pre-base consisting of soft pre-clopen sets.  

Proof: Let  ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼)  be a 𝒮𝒫-compact map such that 𝕄 has a 

pre-base consisting of soft pre-clopen sets.  Suppose that 𝔾𝔼 is a  mildly 𝒮𝒫-compact 

in 𝕄. Since 𝕄 has a soft pre-base consisting of soft pre-clopen sets.  Subsequently, 

𝔾𝔼 has a soft pre-base consisting of soft pre-clopen sets by  Theorem  2.21. Thus, 

𝔾𝔼is a 𝒮𝒫-compact set in 𝕄 by Theorem 2.15.  So, ℒ−1(𝔾𝔼) is a 𝒮𝒫-compact set in 

𝕎 by definition of the 𝒮𝒫-compact map.  As a result of Proposition 2.13 and proposi-

tion 2.14, ℒ−1(𝔾𝔼) is a mildly 𝒮𝒫-compact set in 𝕎. Therefore, ℒis a mildly 𝒮𝒫-

compact map.   ∎  

 Theorem: Each mildly 𝓢𝓟-compact map is a 𝓢𝓟-compact map when the 

domain has a soft pre-base consisting of soft pre-clopen sets.  

Proof: Let  ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be a mildly 𝒮𝒫--compact map such that 𝕎 

has a pre-base consisting of soft pre-clopen sets.  Suppose that 𝔾𝔼 is a 𝒮𝒫-compact 

set in 𝕄.  Subsequently, 𝔾𝔼 is a mildly 𝒮𝒫-compact set in 𝕄 by Proposition 2.13 and 

Proposition 2.14, subsequently that ℒ−1(𝔾𝔼)is a mildly 𝒮𝒫 -compact set in 𝕎  by 

definition of a mildly𝒮𝒫-compact map.  Since 𝕎 has a pre-base consisting of soft 

pre-clopen sets subsequently that ℒ−1(𝔾𝔼)has pre-base consisting of soft pre-clopen 

sets by Theorem 2.21.  by Theorem 2.15, that ℒ−1(𝔾𝔼)is a 𝒮𝒫-compact set in 𝕎. 

Therefore, ℒis a 𝒮𝒫-compact map.  ∎ 

 Theorem: Each 𝓢𝓟-compact map is an almost 𝓢𝓟-compact map when the co-

domain has a soft pre-base consisting of soft pre-clopen sets.  

Proof: Letℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼)be a 𝒮𝒫-compact map such that 𝕄 has a pre-

base consisting of soft pre-clopen sets.  Suppose that 𝔾𝔼 is an almost 𝒮𝒫-compact set 

in 𝕄, so 𝔾𝔼 is a mildly 𝒮𝒫-compact set in 𝕄 by Proposition 2.14. Since 𝕄 has a pre-

base consisting of soft pre-clopen sets, subsequently 𝔾𝔼 has a soft  pre-base consisting 

of soft pre-clopen sets Theorem 2.21.  Thus, 𝔾𝔼 is a 𝒮𝒫-compact set in 𝕄 by Theo-

rem 2.15.  Subsequently, ℒ−1(𝔾𝔼) is a 𝒮𝒫 -compact set in 𝕎  due to ℒℰ  is a 𝒮𝒫 -
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compact map. Proposition 2.13 implies that ℒ−1(𝔾𝔼)is an almost 𝒮𝒫-compact set in 

𝕎.  Therefore, ℒ is an almost 𝒮𝒫-compact map.  ∎ 

 Theorem: Each almost 𝓢𝓟-compact map is a 𝓢𝓟-compact map when the 

domain has a soft pre-base consisting of soft pre-clopen sets.  

Proof: Let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an almost 𝒮𝒫-compact map such that 𝕎 

has a pre-base consisting of soft pre-clopen sets.  Let 𝔾𝔼 pre-compact set in 𝕄 by 

Proposition 2.13. 𝔾𝔼is an almost 𝒮𝒫-compact set in 𝕄.  ℒ−1(𝔾𝔼)   is an almost 𝒮𝒫-

compact set in 𝕎 by defection almost 𝒮𝒫-compact map. ℒ−1(𝔾𝔼) is a mildly 𝒮𝒫-

compact set in 𝕎 by proposition 2.14. 𝕎 has a soft pre-base consisting of soft pre-

clopen sets subsequently ℒ−1(𝔾𝔼) has a soft pre-base consisting of soft pre-clopen 

sets by Theorem 2.21.  As a result of Theorem 2.15 ℒ−1(𝔾𝔼)is a 𝒮𝒫-compact set in 

𝕎. Therefore, ℒ is a 𝒮𝒫-compact map.  ∎ 

 Theorem: Each almost 𝓢𝓟-compact map is a mildly 𝓢𝓟-compact map When 

the co-domain has a pre-base of soft pre-clopen sets.  

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)  ⟶(𝕄 ,𝕋′ ,𝔼)be an almost 𝒮𝒫 -compact map such that 

𝕄 has a pre-base of a soft pre-clopen set.  Suppose that 𝔾𝔼 be a mildly 𝒮𝒫-compact 

set in 𝕄. Thus,𝔾𝔼 has a pre-base of soft pre-clopen sets because 𝕄 has a pre-base of 

soft pre-clopen sets  Theorem 2.21. So, 𝔾𝔼 is a 𝒮𝒫-compact set in 𝕄 by Theorem 

2.15, and as a result of Proposition 2.13, 𝕄 is an almost 𝒮𝒫-compact set in 𝕄. Thus, 

ℒ−1(𝔾𝔼) is an almost 𝒮𝒫-compact set in 𝕎 since ℒis an almost 𝒮𝒫-compact map. 

Therefore, ℒ−1(𝔾𝔼) is a mildly  𝒮𝒫-compact set in 𝕎 by Proposition 2.14  Therefore, 

ℒ is a mildly 𝒮𝒫-compact map.  ∎ 

 Theorem: Each mildly 𝓢𝓟-compact map is an almost soft 𝓢𝓟-compact map 

when the domain has a pre-base of soft pre-clopen sets.  

Proof:  Let ℒ: (𝕄, 𝕋, 𝔼) ⟶ (𝕎,𝕋′, 𝔼) be a mildly 𝒮𝒫-compact map such that 𝕎 

has a pre-base of a soft pre-clopen set. Suppose that 𝔾𝔼is an almost 𝒮𝒫-compact set 

in 𝕄 . 𝔾𝔼 is a mildly 𝒮𝒫 -compact set in 𝕄  by Proposition 2.14. Subsequently 

ℒ−1(𝔾𝔼)   is a mildly 𝒮𝒫-compact set in 𝕎 by definition of a mildly 𝒮𝒫-compact 

map. 𝕎 has a pre-base of soft pre-clopen sets, subsequently, ℒ−1(𝔾𝔼)  has a pre-base 

of soft pre-clopen sets by Theorem 2.21.  As a result of Theorem 2.15, ℒ−1(𝔾𝔼) is a 

𝒮𝒫-compact set in 𝕎 by Proposition 2.13,ℒ−1(𝔾𝔼) is an almost 𝒮𝒫-compact set in 

𝕎,Therefore , ℒ−1(𝔾𝔼)  is an almost 𝒮𝒫-compact map.    
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4 Restriction of type pre-compact maps  

 Theorem: let 𝓛: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′ , 𝔼) be a 𝓢𝓟-compact map. if 𝔸𝔼  is a 

pre-closed subset of 𝕎 then the restriction 𝒈 = 𝓛|(𝔸𝔼, 𝕋𝔸, 𝔼): (𝔸𝔼, 𝕋𝔸, 𝔼)→ 

(𝕄,𝕋′,𝔼) is a 𝓢𝓟-compact map.   

Proof: let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′ , 𝔼) is a 𝒮𝒫-compact map, 𝔸𝔼   is a pre-closed 

subset of 𝕎, the relative soft topology on 𝔸𝔼  is 𝕋𝔸 = {𝔸𝔼
∗ = 𝔸𝔼 ∩ 𝔽𝔼, ∀𝔽𝔼 ∈ 𝕋}. 

Suppose 𝔾𝔼 is a 𝒮𝒫-compact set in 𝕄, ℒ−1(𝔾𝔼)is a 𝒮𝒫-compact set in𝕎 since ℒ is a 

𝒮𝒫-compact map. Subsequently, 𝔸𝔼 ∩ ℒ−1(𝔾𝔼) ∈ 𝕋𝔸 is a 𝒮𝒫-compact set by Theo-

rem2.16. Therefore 𝑔 = (𝔸𝔼, 𝕋𝔸, 𝔼) → (𝕄, 𝕋′, 𝔼)is a 𝒮𝒫-compact map.  ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′ , 𝔼)be an almost(resp. a mildly)  𝓢𝓟-

compact map. If  𝔸𝔼  is a soft pre-clopen subset of 𝕎 then the restriction 𝒈 =
𝓛|(𝔸𝔼, 𝕋𝔸, 𝔼) :  (𝔸𝔼, 𝕋𝔸, 𝔼)→ ( 𝕄 , 𝕋′ , 𝔼 ) is an almost(resp. a mildly) 𝓢𝓟 -

compact map.   

Proof: Let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′ , 𝔼)be an almost(resp. a mildly) 𝒮𝒫-compact 

map,𝔸𝔼  is a soft pre-clopen subset of 𝕎, the relative topology on 𝔸𝔼 is 𝕋𝔸 = {𝔸𝔼
∗ =

𝔸𝔼 ∩ 𝔽𝔼, ∀𝔽𝔼 ∈ 𝕋}. Suppose 𝔾𝔼 is an almost(resp. a mildly)  𝒮𝒫-compact set in 𝕄, 

ℒ−1(𝔾𝔼) is an almost (resp. a mildly) 𝒮𝒫-compact set in  𝕎 since ℒ is an almost 

(resp. a mildly) 𝒮𝒫-compact map. Subsequently, 𝔸𝔼 ∩ ℒ−1(𝔾𝔼) ∈ 𝕋𝔸  is an almost 

(resp . a mildly) 𝒮𝒫-compact set by Theorem 2.17, Therefore,  𝑔 = (𝔸𝔼, 𝕋𝔸, 𝔼)  → 

(𝕄, 𝕋′, 𝔼) is an almost (resp .a mildly) 𝒮𝒫-compact map. ∎ 

 Theorem: let 𝓛: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼) be an A-almost(resp. M-mildly) 𝓢𝓟-

compact map. If  𝔸𝔼  is a soft pre-closed subset of 𝕎 then the restriction 𝒈 =
𝓛|(𝔸𝔼, 𝕋𝔸, 𝔼): (𝔸𝔼, 𝕋𝔸, 𝔼)→ (𝕄,𝕋′ ,𝔼) is an A-almost(resp. M-mildly) 𝓢𝓟-

compact map.  

Proof: Let ℒ: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′, 𝔼)be an A-almost(resp. M-mildly )𝒮𝒫-compact 

map,𝔸𝔼  is a soft pre-closed subset of 𝕎, the relative topology on 𝔸𝔼 is 𝕋𝔸 = {𝔸𝔼
∗ =

𝔸𝔼 ∩ 𝔽𝔼, ∀𝔽𝔼 ∈ 𝕋}. Suppose 𝔾𝔼  is an almost(resp. mildly)  𝒮𝒫-compact set in 𝕄, 

ℒ−1(𝔾𝔼) is a 𝒮𝒫-compact set in  𝕎 since ℒ is an A-almost (resp. M-mildly )𝒮𝒫-

compact map. Subsequently, 𝔸𝔼 ∩ ℒ−1(𝔾𝔼) ∈  𝕋𝔸  is a 𝒮𝒫 -compact set by Theo-

rem2.17. Therefore,  𝑔 = (𝔸𝔼, 𝕋𝔸, 𝔼)  → (𝕄, 𝕋′, 𝔼) is an A-almost(resp. M-mildly 

)𝒮𝒫-compact map. ∎ 
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 Theorem: let 𝓛: (𝕎, 𝕋, 𝔼) ⟶ (𝕄, 𝕋′ , 𝔼) be an A *-almost(resp. M*-mildly)  

𝓢𝓟-compact map. If  𝔸𝔼  is a soft pre-clopen subset of 𝕎 then the restriction 

𝒈 = 𝓛|(𝔸𝔼, 𝕋𝔸, 𝔼): (𝔸𝔼, 𝕋𝔸, 𝔼)→ (𝕄,𝕋′,𝔼) is an A*-almost(resp.M*-mildly) 

𝓢𝓟-compact map.  

Proof: Let  ℒ: (𝕎, 𝕋, 𝔼)  ⟶  ( 𝕄 , 𝕋′ , 𝔼 )be an A*-almost(resp.M*-mildly) 𝒮𝒫 -

compact map,𝔸𝔼  is a soft pre-clopen subset of 𝕎, the relative topology on 𝔸𝔼  is 

𝕋𝔸 = {𝔸𝔼
∗ = 𝔸𝔼 ∩ 𝔽𝔼, ∀𝔽𝔼 ∈ 𝕋}. Suppose 𝔾𝔼 is a  𝒮𝒫-compact set in 𝕄, ℒ−1(𝔾𝔼) 

is an almost(resp. mildly )𝒮𝒫-compact set in  𝕎 since ℒ is an A*-almost(resp. M*-

mildly) 𝒮𝒫 -compact map. Subsequently, 𝔸𝔼 ∩ ℒ−1(𝔾𝔼) ∈  𝕋𝔸  is an almost(resp. 

mildly) 𝒮𝒫-compact set by Theorem 2.17. Therefore,  𝑔 = (𝔸𝔼, 𝕋𝔸, 𝔼)  → (𝕄, 𝕋′, 𝔼) 

is an A*-almost(resp. M*-mildly) 𝒮𝒫-compact map. ∎ 

5 Composition of Certain Types of 𝓢𝓟-Compact Maps 

 Theorem: The composition of 𝓢𝓟-compact maps (one by one almost 𝓢𝓟-

compact maps, mildly 𝓢𝓟-compact maps) is also a 𝓢𝓟-compact map (one by 

one almost 𝓢𝓟-compact maps, mildly 𝓢𝓟-compact map).  

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) and 𝒽: ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼)  be two 𝒮𝒫 -

compact(one by one almost 𝒮𝒫-compact, mildly 𝒮𝒫-compact) maps.  To veras long 

asy that  𝒽 ∘ ℒ  is also 𝒮𝒫 -compact(one by one almost 𝒮𝒫 -compact, mildly 𝒮𝒫 -

compact) maps.  Suppose that 𝔾𝔼 is a 𝒮𝒫-compact(resp. an almost 𝒮𝒫--compact, a 

mildly 𝒮𝒫-compact) set in 𝕄. (to show that (𝒽 ∘ ℒ)−1𝔾𝔼 is a 𝒮𝒫-compact(one by 

one an almost 𝒮𝒫-compact, a mildly 𝒮𝒫-compact)  set in 𝕎. We have 𝒽−1(𝔾𝔼)  is a 

𝒮𝒫-compact(one by one an almost 𝒮𝒫-compact, a mildly 𝒮𝒫-compact)  set in 𝕁 since 

𝒽is a 𝒮𝒫-compact(one by one an almost 𝒮𝒫-compact, a mildly 𝒮𝒫-compact) map.  

Subsequently,  ℒ−1(𝒽−1(𝔾𝔼))is a 𝒮𝒫-compact(one by one an almost 𝒮𝒫-compact, a 

mildly 𝒮𝒫-compact)  set in 𝕎 because ℒ is a 𝒮𝒫-compact(one by one an almost 𝒮𝒫-

compact, a mildly 𝒮𝒫-compact)  map. We have (𝒽 ∘ ℒ)−1𝔾𝔼= ℒ−1(𝒽−1(𝔾𝔼)). so 

(𝒽 ∘ ℒ)−1is a 𝒮𝒫-compact(one by one an almost 𝒮𝒫-compact, a mildly 𝒮𝒫-compact)  

set in 𝕎.  Therefore, 𝒽 ∘ ℒ is also a 𝒮𝒫-compact(one by one an almost 𝒮𝒫-compact, 

a mildly 𝒮𝒫-compact) map.       ∎ 

 Theorem: The composition of A-almost (resp. M-mildly) a 𝓢𝓟-compact map 

is also A-almost (resp. M-mildly ) 𝓢𝓟-compact map.  

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) and 𝒽: ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼)  be two A-

almost (resp. M-mildly ) 𝒮𝒫-compact maps.  To veras long asy that  𝒽 ∘ ℒ  is also A-

almost (resp. M-mildly )𝒮𝒫-compact map.  Suppose that 𝔾𝔼 is an almost (resp. mild-

ly) 𝒮𝒫-compact set in 𝕄. (to show that (𝒽 ∘ ℒ)−1𝔾𝔼 is a 𝒮𝒫-compact)  set in 𝕎. We 

have 𝒽−1(𝔾𝔼)  is a 𝒮𝒫-compact set in 𝕁 since 𝒽 is an A-almost(resp. M-mildly ) 𝒮𝒫-

compact map. By Proposition 2.13 (resp. Proposition 2.13and Proposition 

2.14)  𝒽−1(𝔾𝔼) is an almost (resp. mildly ) 𝒮𝒫 -compact set in 𝕁 . Subsequently, 
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ℒ−1(𝒽−1(𝔾𝔼))is a 𝒮𝒫-compact set in 𝕎 because ℒ is an A-almost (resp. M-mildly 

)𝒮𝒫 -compact map. We have (𝒽 ∘ ℒ)−1𝔾𝔼 =  ℒ−1(𝒽−1(𝔾𝔼))  so (𝒽 ∘ ℒ)−1 is a 𝒮𝒫 -

compact set in 𝕎.  Therefore, 𝒽 ∘ ℒ  is an A-almost (resp. M-mildly)𝒮𝒫-compact 

map.       ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→( 𝕁, 𝕋′, 𝔼) is a 𝓢𝓟-compact map and 𝓱: ( 𝕁, 𝕋′, 𝔼) 

→(𝕄, 𝕋′′, 𝔼) is an A-almost(resp. M-mildly) 𝓢𝓟-compact map then  𝓱 ∘ 𝓛   is 

an A-almost(resp. M-mildly) 𝓢𝓟-compact map. 

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) be a 𝒮𝒫 -compact map 

and  𝒽: ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′   , 𝔼)  A-almost(resp. M-mildly) 𝒮𝒫 -compact map.  To 

versa long asy that  𝒽 ∘ ℒ  is also A-almost(resp. M-mildly) 𝒮𝒫-compact map. Sup-

pose that 𝔾𝔼  is an almost(resp. mildly )𝒮𝒫-compact set in 𝕄. (to show that (𝒽 ∘
ℒ)−1𝔾𝔼 is a 𝒮𝒫-compact)  set in 𝕎. We have 𝒽−1(𝔾𝔼)  is a 𝒮𝒫 -compact set in 

𝕁 since 𝒽  is an A-almost(resp. M-mildly) 𝒮𝒫 -compact map. Subsequently, 

ℒ−1(𝒽−1(𝔾𝔼))is a 𝒮𝒫-compact set in 𝕎 because ℒ is a 𝒮𝒫-compact map. We have 

(𝒽 ∘ ℒ)−1𝔾𝔼 = ℒ−1(𝒽−1(𝔾𝔼)) so (𝒽 ∘ ℒ)−1is a 𝒮𝒫-compact set in 𝕎. Therefore, 𝒽 ∘
ℒ is an A-almost(resp. M-mildly) 𝒮𝒫-compact map.       ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→( 𝕁, 𝕋′, 𝔼)  is an A-almost(resp. M-mildly) 𝓢𝓟-

compact map and 𝓱:( 𝕁, 𝕋′, 𝔼)→(𝕄, 𝕋′′ , 𝔼) is a 𝓢𝓟-compact map. 𝓱 ∘ 𝓛  is a 

𝓢𝓟-compact map. 

Proof: By Theorem 5.1 and Theorem 3.11(resp. by  Theorem 5.1 and Theorem 

3.16)  ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→( 𝕁, 𝕋′, 𝔼) is an A-almost (resp. M-mildly) 𝓢𝓟-

compact map and 𝓱  :( 𝕁, 𝕋′, 𝔼)→(𝕄, 𝕋′′, 𝔼) is an almost (resp. mildly) 𝓢𝓟-

compact map. 𝓱 ∘ 𝓛  is an A-almost (resp.M-mildly) 𝓢𝓟-compact map.  

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) be an A-almost (M-mildly)  𝒮𝒫-compact map 

and 𝒽: ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼) is an almost(resp. mildly) 𝒮𝒫-compact map.  To versa 

long asy that  𝒽 ∘ ℒ  is also A-almost(resp. M-mildly) 𝒮𝒫-compact map.  Suppose 

that 𝔾𝔼  is an almost (resp. mildly) 𝒮𝒫 -compact set in 𝕄 . (to show that (𝒽 ∘
ℒ)−1𝔾𝔼 is a 𝒮𝒫-compact)  set in 𝕎. We have 𝒽−1(𝔾𝔼)  is an almost(resp. mildly) 

𝒮𝒫-compact set in 𝕁 since 𝒽 is an almost (resp. mildly)𝒮𝒫-compact map. Subsequent-

ly, ℒ−1(𝒽−1(𝔾𝔼)) is a 𝒮𝒫 -compact set in 𝕎  because ℒ  is an A-almost(resp. M-

mildly)  𝒮𝒫-compact map. We have (𝒽 ∘ ℒ)−1𝔾𝔼 = ℒ−1(𝒽−1(𝔾𝔼)) so (𝒽 ∘ ℒ)−1is a 

𝒮𝒫-compact  set in 𝕎. Therefore, 𝒽 ∘ ℒ is an A-almost(resp. M-mildly)  𝒮𝒫-compact 

map.       ∎ 
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 Theorem: Let  𝓛: (𝕎, 𝕋, 𝔼)→( 𝕁, 𝕋′, 𝔼)  is an almost (resp. mildly) 𝓢𝓟 -

compact map and 𝓱  :( 𝕁, 𝕋′, 𝔼)→(𝕄, 𝕋′′ , 𝔼)  is an A-almost (resp. M-

mildly)𝓢𝓟-compact map. 𝓱 ∘ 𝓛  is an almost(resp. mildly) 𝓢𝓟-compact map.  

Proof: By Theorem 5.1 and Theorem 3.12(resp. By Theorem 5.1 and Theorem 

3.18).   ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→( 𝕁, 𝕋′, 𝔼) is an A-almost (resp. M-mildly ) 𝓢𝓟-

compact map and 𝓱 :( 𝕁, 𝕋′, 𝔼)→(𝕄, 𝕋′′ , 𝔼) is an A*-almost(resp. M*-mildly) 

𝓢𝓟-compact map then 𝓱 ∘ 𝓛  is a 𝓢𝓟-compact map.  

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) is an A-almost (resp. M-mildly) 𝒮𝒫-compact 

map and 𝒽: ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼) is an A*-almost(resp. M*-mildly)  𝒮𝒫-compact 

map.  To versa long asy that  𝒽 ∘ ℒ  is a 𝒮𝒫-compact map.  Suppose that 𝔾𝔼 is a 𝒮𝒫-

compact set in 𝕄. (to show that (𝒽 ∘ ℒ)−1𝔾𝔼 is a 𝒮𝒫-compact)  set in 𝕎. We have 

𝒽−1(𝔾𝔼)  is an almost(resp. mildly) 𝒮𝒫-compact set in 𝕁 since 𝒽 is an A*-almost 

(resp. M*-mildly) 𝒮𝒫-compact map. Subsequently, ℒ−1(𝒽−1(𝔾𝔼))is a 𝒮𝒫-compact 

set in 𝕎  because ℒ  is an A-almost (resp. M-mildly) 𝒮𝒫 -compact map. We have 

(𝒽 ∘ ℒ)−1𝔾𝔼  =  ℒ−1(𝒽−1(𝔾𝔼))  so (𝒽 ∘ ℒ)−1 is a 𝒮𝒫 -compact  set in 𝕎 . There-

fore, 𝒽 ∘ ℒ is a 𝒮𝒫-compact map.       ∎   

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→( 𝕁, 𝕋′, 𝔼) is an A*-almost(resp. M*-mildly) 𝓢𝓟-

compact map and 𝓱  :( 𝕁, 𝕋′, 𝔼)→(𝕄, 𝕋′′ , 𝔼)  is an A-almost(resp. M-mildly) 

𝓢𝓟-compact map then 𝓱 ∘ 𝓛  is an almost (resp. mildly ) 𝓢𝓟-compact map.   

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) is an A*-almost(resp. M*-mildly) 𝒮𝒫 -

compact map and 𝒽: ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′ , 𝔼)  is an A-almost(resp. M-mildly)  𝒮𝒫 -

compact map.  To versa long asy that  𝒽 ∘ ℒ  is an almost (resp. mildly)𝒮𝒫-compact 

map.  Suppose that 𝔾𝔼 is an almost(resp. mildly) 𝒮𝒫-compact set in 𝕄. to show that 

(𝒽 ∘ ℒ)−1𝔾𝔼 is an almost(resp. mildly) 𝒮𝒫-compact  set in 𝕎. We have 𝒽−1(𝔾𝔼)  is  

𝒮𝒫-compact set in 𝕁 since 𝒽 is an A-almost(resp. M-mildly)  𝒮𝒫-compact map. Sub-

sequently, ℒ−1(𝒽−1(𝔾𝔼))is an almost(resp. mildly) soft pre-compact set in 𝕎 be-

cause ℒ is an A*-almost(resp. M*-mildly)  𝒮𝒫-compact map. We have (𝒽 ∘ ℒ)−1𝔾𝔼 

=  ℒ−1(𝒽−1(𝔾𝔼))  so (𝒽 ∘ ℒ)−1 is an almost(resp. mildly) 𝒮𝒫 -compact  set in 𝕎 . 

Therefore, 𝒽 ∘ ℒ is an almost(resp. mildly) 𝒮𝒫-compact map.       ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→( 𝕁, 𝕋′, 𝔼) is an A-almost 𝓢𝓟-compact map and 

𝓱 :( 𝕁, 𝕋′, 𝔼)→(𝕄, 𝕋′′, 𝔼) is an M-mildly 𝓢𝓟-compact map then 𝓱 ∘ 𝓛  is an 

M-mildly  𝓢𝓟-compact map. 

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) be an A-almost 𝒮𝒫 -compact map 

and 𝒽: ( 𝕁, 𝕋′ , 𝔼)→ (𝕄, 𝕋′′, 𝔼) is an M-mildly  𝒮𝒫-compact map.  To versa long asy 

that  𝒽 ∘ ℒ  is a mildly 𝒮𝒫-compact map. Suppose that 𝔾𝔼 is a mildly 𝒮𝒫-compact set 

in 𝕄. to show that (𝒽 ∘ ℒ)−1𝔾𝔼 is a 𝒮𝒫-compact  set in 𝕎. We have 𝒽−1(𝔾𝔼)  is  

𝒮𝒫-compact set in 𝕁 since 𝒽 is an M-mildly. By Proposition 2.13 𝒽−1(𝔾𝔼)  is an 
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almost 𝒮𝒫-compact set in 𝕁. Subsequently, ℒ−1(𝒽−1(𝔾𝔼))is a 𝒮𝒫-compact set in 𝕎 

because ℒ is an A-almost 𝒮𝒫-compact map. We have (𝒽 ∘ ℒ)−1𝔾𝔼 = ℒ−1(𝒽−1(𝔾𝔼)) 

so (𝒽 ∘ ℒ)−1 is a 𝒮𝒫 -compact  set in 𝕎 . Therefore,  𝒽 ∘ ℒ  is an M-mildly  𝒮𝒫 -

compact map.       ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→( 𝕁, 𝕋′, 𝔼) is an M-mildly 𝓢𝓟-compact map and 𝓱 

:( 𝕁, 𝕋′, 𝔼)→(𝕄, 𝕋′′, 𝔼) is an A-almost 𝓢𝓟-compact map then 𝓱 ∘ 𝓛  is an A-

almost 𝓢𝓟-compact map. 

Proof: Let ℒ: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) is an M-mildly 𝒮𝒫-compact map and 𝒽: ( 𝕁 

, 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼) is an A-almost 𝒮𝒫-compact map.  To versa long asy that  𝒽 ∘ ℒ  
is an A-almost 𝒮𝒫-compact map. Suppose that 𝔾𝔼 is an almost 𝒮𝒫-compact set in 𝕄. 

to show that (𝒽 ∘ ℒ)−1𝔾𝔼 is a 𝒮𝒫-compact  set in 𝕎. We have 𝒽−1(𝔾𝔼)  is  𝒮𝒫-

compact set in 𝕁 since 𝒽 is an A-almost 𝒮𝒫-compact map. By Proposition 2.13and 

Proposition 2.14  𝒽−1(𝔾𝔼)   is a mildly 𝒮𝒫 -compact set in  𝕁 . Subsequently, 

ℒ−1(𝒽−1(𝔾𝔼))is a 𝒮𝒫-compact set in 𝕎 because ℒ is an M-mildly 𝒮𝒫-compact map. 

We have (𝒽 ∘ ℒ)−1𝔾𝔼  =  ℒ−1(𝒽−1(𝔾𝔼))  so (𝒽 ∘ ℒ)−1 is a 𝒮𝒫 -compact  set in 𝕎 . 

Therefore, 𝒽 ∘ ℒ is an A-almost  𝒮𝒫-compact map.       ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼)be a 𝓢𝓟-compact map and 𝓱: ( 𝕁, 𝕋′ 

, 𝔼)→ (𝕄, 𝕋′′, 𝔼) is a mildly 𝓢𝓟-compact map. As long as ( 𝕁, 𝕋′, 𝔼)  has a 

soft pre-base of soft pre-clopen sets, subsequently ,𝓱 ∘ 𝓛  is a mildly 𝓢𝓟-

compact map.     

Proof: Suppose 𝔾𝔼  is a mildly 𝒮𝒫-compact set in 𝕄  (to show that 𝒽 ∘ ℒ  is a 

mildly 𝒮𝒫-compact map). we have 𝒽−1(𝔾𝔼) is a mildly 𝒮𝒫-compact set in 𝕁since 

𝒽 is a mildly 𝒮𝒫-compact map. Subsequently, ℒ is a 𝒮𝒫-compact map with a co-

domain that has a soft pre-base of soft pre-clopen sets.  As a result of Theorem 3.26.  

we get ℒ−1(𝒽−1(𝔾𝔼)). is a mildly 𝒮𝒫-compact set in𝕎, because of (𝒽 ∘ ℒ)−1𝔾𝔼 = 

 ℒ−1(𝒽−1(𝔾𝔼)). so, (𝒽 ∘ ℒ)−1𝔾𝔼 is a mildly 𝒮𝒫-compact set in 𝕎. Therefore,  𝒽 ∘ ℒ  

is also a mildly 𝒮𝒫-compact map.     ∎ 

 Theorem: Let 𝓛: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) is a mildly 𝓢𝓟-compact map and 𝓱 

: ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼) is a 𝓢𝓟-compact map.  As long as (𝕎, 𝕋, 𝔼)has a soft 

pre-base of a soft pre-clopen set Subsequently 𝓱 ∘ 𝓛 is a 𝓢𝓟-compact map.    

Proof: Suppose 𝔾𝔼  is a 𝒮𝒫 -compact set in 𝕄 . (to show that 𝒽 ∘ ℒ is a  𝒮𝒫 -

compact  map). we have 𝒽−1(𝔾𝔼) is a 𝒮𝒫-compact set in 𝕁 since 𝒽 is a 𝒮𝒫-compact 

map.  Subsequently, ℒ is a mildly 𝒮𝒫-compact  map with a domain that has a soft pre-

base of a soft pre-clopen set.  As a result of Theorem 3.27 ℒ−1(𝒽−1(𝔾𝔼)). is 𝒮𝒫-

compact set in 𝕎. Because of (𝒽 ∘ ℒ)−1𝔾𝔼= ℒ−1(𝒽−1(𝔾𝔼)). So  (𝒽 ∘ ℒ)−1𝔾𝔼   is 

𝒮𝒫-compact set in 𝕎. Therefore, 𝒽 ∘ ℒ is also a 𝒮𝒫-compact map. ∎ 
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 Theorem: Authorize 𝓛: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) be a 𝓢𝓟-compact map and 𝓱 

 : ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼)   is an almost 𝓢𝓟 -compact map. As long as 

( 𝕁, 𝕋′, 𝔼) has a soft pre-base of soft pre-clopen. Subsequently 𝓱 ∘ 𝓛  is an 

almost  𝓢𝓟-compact map.    

Proof: Suppose 𝔾𝔼 is an almost 𝒮𝒫-compact set in 𝕄.  (to show that 𝒽 ∘ ℒ is an 

almost 𝒮𝒫-compact map). we have 𝒽−1(𝔾𝔼) is an almost 𝒮𝒫-compact set in 𝕁 since 

𝒽 is an almost 𝒮𝒫-compact map.  Subsequently, ℒ is a 𝒮𝒫-compact map with a co-

domain that has a pre-base soft pre-clopen set. As a result of Theorem 3.28, we get 

ℒ−1(𝒽−1(𝔾𝔼)) .is an almost 𝒮𝒫 -compact set in 𝕎 . Because (𝒽 ∘ ℒ)−1𝔾𝔼 = 

 ℒ−1(𝒽−1(𝔾𝔼)). So (𝒽 ∘ ℒ)−1𝔾ℰis an almost  𝒮𝒫-compact set in 𝕎. Therefore, 𝒽 ∘
ℒis also an almost  𝒮𝒫-compact map.       ∎                                                                       

 Theorem: Let  𝓛: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼)  is an almost 𝓢𝓟-compact map and 

 𝓱: ( 𝕁 , 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼)  is a 𝓢𝓟-compact map. As long as (𝕎, 𝕋, 𝔼)has a 

pre-base soft pre-clopen set.  Subsequently 𝓱 ∘ 𝓛 is a 𝓢𝓟-compact map.    

Proof: Suppose 𝔾𝔼  is a 𝒮𝒫 -compact set in 𝕄   )to show that 𝒽 ∘ ℒ is 𝒮𝒫 -𝒮𝒫 -

compact map). we have 𝒽−1(𝔾𝔼) is 𝒮𝒫-compact set in 𝕁 since 𝒽 is a 𝒮𝒫-compact 

map.  Subsequently, ℒ is an almost 𝒮𝒫-compact map with a domain that has a pre-

base soft pre-clopen set.  As a result, to Theorem 3.29.  we get ℒ−1(𝒽−1(𝔾𝔼)). is a 

𝒮𝒫-compact set in 𝕎. Because of (𝒽 ∘ ℒ)−1𝔾𝔼 = ℒ−1(𝒽−1(𝔾𝔼)). So (𝒽 ∘ ℒ)−1𝔾𝔼 is 

a 𝒮𝒫-compact set in 𝕎.  Therefore, 𝒽 ∘ ℒ is also a 𝒮𝒫-compact map.   ∎ 

 Theorem: Let  𝓛: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼) is an almost 𝓢𝓟 -compact map and 

𝓱: ( 𝕁, 𝕋′, 𝔼)→ (𝕄, 𝕋′′, 𝔼)    is a mildly 𝓢𝓟 -compact map.  As long as 

( 𝕁, 𝕋′, 𝔼)has a soft pre-base of a soft pre-clopen set.  Subsequently 𝓱 ∘ 𝓛 is a 

mildly 𝓢𝓟-compact map.   

Proof: Suppose 𝔾𝔼is a mildly 𝒮𝒫-compact set in 𝒽−1(𝔾𝔼). (to show that 𝒽 ∘ ℒ is 

a mildly 𝒮𝒫 -compact map). we have  𝒽−1(𝔾𝔼)is a mildly 𝒮𝒫 -𝑒 −compact set in 

𝕁since 𝒽 is a mildly 𝒮𝒫-compact map. Subsequently ℒ  is an almost   𝒮𝒫-compact 

map with a co-domain that has a soft pre-base of a soft pre-clopen set. As a result, of 

Theorem 3.30 we get ℒ−1(𝒽−1(𝔾𝔼)). is a mildly 𝒮𝒫-compact set in  𝕎.  Because of 

(𝒽 ∘ ℒ)−1𝔾𝔼  = ℒ−1(𝒽−1(𝔾𝔼)).  So (𝒽 ∘ ℒ)−1𝔾𝔼is a mildly 𝒮𝒫-compact set in 𝕎.  

Therefore, 𝒽 ∘ ℒ is a mildly 𝒮𝒫-compact map.    ∎ 

 Theorem:Let 𝓛: (𝕎, 𝕋, 𝔼)→ ( 𝕁, 𝕋′, 𝔼)is a mildly 𝓢𝓟-compact map and 𝓱: ( 𝕁  

, 𝕋′, 𝔼)→ (𝕄, 𝕋′′ , 𝔼)   is an almost 𝓢𝓟-compact map.  As long as (𝕎, 𝕋, 𝔼)has 

a soft pre-base soft pre-clopen set. Subsequently, 𝓱 ∘ 𝓛  is an almost 𝓢𝓟 -

compact map.  

Proof: Suppose 𝔾𝔼is an almost 𝒮𝒫-𝒮𝒫-compact set in 𝕄. (to show that 𝒽 ∘ ℒ is 

an almost 𝒮𝒫 -compact map). we have  𝒽−1(𝔾𝔼)  is an almost 𝒮𝒫 -compact set in 

𝕁ℰsince 𝒽ℰ is an almost 𝒮𝒫-compact map. Subsequently ℒ is a mildly   𝒮𝒫-compact 
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map with a domain that has a pre-base soft pre-clopen set. From Theorem 3.32 we get 

ℒ−1(𝒽−1(𝔾𝔼)) is an almost 𝒮𝒫 -compact set in  𝕎 . Because of (𝒽 ∘ ℒ)−1𝔾𝔼  = 

 ℒ−1(𝒽−1(𝔾𝔼)). So (𝒽 ∘ ℒ)−1𝔾𝔼 is an almost 𝒮𝒫-compact set in 𝕎. Therefore, 𝒽 ∘
ℒ is an almost 𝒮𝒫-compact map.   ∎ 

6 Conclusion 

To sum up, we create in this paper a soft pre-compact map and investigate its asso-

ciations with soft pre-compact maps, almost soft pre-compact maps, A-almost soft 

compact maps, A*-almost soft compact maps, mildly soft semi-compact maps, M-

mildly soft compact maps besides M*-mildly soft compact maps which are utilized 

from the relations between their spaces  under some conditions or without conditions. 

Moreover, the composition factors of soft pre-compact maps with soft pre-compact 

maps, almost soft pre-compact maps, and mildly soft pre-compact maps, A-almost 

soft compact maps, M-mildly soft compact maps are studied based on the previous 

association between them.  
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Abstract—Definition of bi-supra topological space via graph theory was in-

troduced in this study. We also studied some concepts related of bi supra-

topological space via graph theory. "At least many theorems were proofed as a 

characterization and some examples introduced to explain the subject". 

Keywords—bi-supra topological, subgraph , closure, interior, boundary, exte-

rior.   

1 Introduction 

Topology is a branch of pure mathematics [8]. In 2019 Gufran Ali [1] we intro-

duced concept bi-supra topological space. In A graph G is defined as a non-empty set 

of elements called "vertices" and we symbolize it sometimes by with the family of 

unordered pairs of vertices set and each element of is called "edge" and we symbolize 

it sometimes by [5]. In 2020 Aiad and Atef [3 , 7] and Abdu [4] and Mahdi[6] the link 

between graph theory and topological space as the definition topological graph. In this 

paper new definition bi-supra topological graph with concept of bi-supra topological 

by graphing concept.   
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2 Preliminaries  

2.1 Definition [1]: suppose X be a non-blank set. "Let 𝒮𝒯 be the set of all semi 

open subset of X (for short 𝒮𝑜 𝑥 [9] and Let 𝒫𝒯 be the set of all pre-open 

subset of X (for short 𝒫o(x))[10], then we say that (X,𝒮𝒯 , 𝒫𝒯) is a bi-supra 

topological space". after both of (X,𝒮𝒯 ) and (X, 𝒫𝒯) 𝑎𝑟𝑒 𝑠𝑢𝑝𝑟𝑎 𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 
𝑠𝑝𝑎𝑐𝑒". 

2.2 Definition: "A subset A of a topological space (X,τ) is called. 

a) a pre-open set if [10] A int(cl(A)) and a pre-closed set if 

cl(int(A))  A; 

b) a semi-open set [9] if A cl(int(A)) and a semi-closed set if 

int(cl(A))  A" 

2.3 Definition  [5]: "Let 𝑮(𝑽, 𝑬) be a graph, we call 𝑯 is a subgraph from  

𝐺 if 𝑉 (𝐻) ⊆ 𝑉 (𝐺), 𝐸 (𝐻)  ⊆  𝐸 (𝐺), in this case we would write 𝐻 ⊆ 

𝐺. The spanning subgraph from a graph 𝐺 is a subgraph acquired by edge  

deletions only. A deduced subgraph of a graph 𝐺 is a subgraph acquired      

by vertex deletions along with the incident edges".       

2.4 Definition [3]: "Let 𝑮(𝑽 , 𝑬) be a graph, 𝒗 ∈  𝑽 (𝑮) then we define  

the post stage 𝑣𝑅 is the set of all vertices which is not neighborhood of 𝑣.  

SG is the collection of (𝑣𝑅) is called subbasis of graph. 𝐵𝐺  =  ⋂ 𝑆𝐺𝑖

𝑛
𝑖=1 is  

called bases of graph. Then the union of 𝐵𝐺  is form a topology on 𝐺 and  

(𝑉(𝐺), 𝜏𝐺) is called topological graph".  

2.5 Definition [3]: "Let 𝑮(𝑽 , 𝑬) be a graph, 𝑯 be a subgraph from G.  

Then the graph closure of 𝑉 (𝐻) has the shape": 

𝐶𝑙𝐺(𝑉(𝐻))  =  𝑉(𝐻)  ∪  {𝑣 ∈ 𝑉(𝐺) ∶  𝑣𝑅 ∩  𝑉(𝐻)  ≠  ∅}. 
Definition [3]:"Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝐻 be a subgraph from    2.6 

G". Then the graph internal of 𝑉(𝐻) had the shape:  

𝐼𝑛𝑡𝐺(𝑉(𝐻))  =  {𝑣 ∈ 𝑉(𝐺) ∶   𝑣𝑅 ⊆  𝑉(𝐻)}. 

Definition [2]: "Let 𝐺(𝑉 , 𝐸) be a graph that contains a topological  2.7 

graph (𝑉(𝐺) , 𝜏𝐺), H be a subgraph of G is called open subgraph if  

𝐼𝑛𝑡𝐺(𝑉(𝐻))  =  𝑉(𝐻). It is called closed subgraph if its complement is  

open subgraph". 

Definition  [2]:"Let 𝐺(𝑉 , 𝐸) be a graph which contain a topological  2.8 

graph (𝑉(𝐺) , 𝜏𝐺), 𝐻 be a subgraph of 𝐺 was named semi-open subgraph if  

𝑉(𝐻)  ⊆ 𝐶𝑙𝐺(𝐼𝑛𝑡𝐺(𝑉(𝐻)))." "The family of all semi-open subgraph from G 
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will be denoted by 𝑆𝑂(𝑉(𝐺)). The complement of a semi-open subgraph is 

called a semi-closed subgraph and the family of all semi- closed subgraph 

from G will be denoted by 𝑆𝐹(𝑉(𝐺))". 

Definition  [2]: "Let 𝐺(𝑉 , 𝐸) be a graph that contains a topological   9 .2 

graph (𝑉(𝐺) , 𝜏𝐺), H be a subgraph from 𝐺is called preopen subgraph if  

𝑉(𝐻)  ⊆ 𝐼𝑛𝑡𝐺(𝐶𝑙𝐺(𝑉(𝐻))). The family of all preopen subgraph from 𝐺  

will be denoted by 𝑃𝑂(𝑉(𝐺)). The complement of a preopen subgraph is  

called pre-closed subgraph and the family of all pre-closed subgraph  

from 𝐺 will be denoted" by 𝑃𝐹(𝑉(𝐺)).  

3 Construct of bi-supra topological via graph  

3.1 Definition: suppose 𝑮(𝑽 , 𝑬)  be a graph. Let 𝓢𝓣𝑮  be the set of all open 

subgraph subset of G and let 𝓟𝓣𝑮be the set of all open subgraph subset of G. 

Then we say that (𝑽(𝑮), 𝓢𝓣𝑮 , 𝓟𝓣𝑮) is a bi-supra topological graph. When 

each of (𝑽(𝑮), 𝓢𝓣𝑮) and (𝑽(𝑮), 𝓟𝓣𝑮) are supra a topological graph. 

3.2 Example: We construct a topological space for G then 

𝑣1𝑅 = {𝑣3} , 𝑣2𝑅 = {𝑣3, 𝑣4} , 𝑣3𝑅 = {𝑣1, 𝑣2} , 𝑣4𝑅 = {𝑣2}.  

Then a topology subbase was 

𝑆𝐺 = {{𝑣3}, {𝑣3, 𝑣4}, {𝑣1, 𝑣2}, {𝑣2}}.  

The base is  

𝛽𝐺 = {𝑉 (𝐺), Ø, {𝑣2}, {𝑣3}, {𝑣3, 𝑣4}, {𝑣1, 𝑣2}}.  

Hence, the topological graph on 𝐺 is  

𝜏𝐺 = {𝑉 (𝐺) , Ø  , {𝑣2} , {𝑣3} , {𝑣2, 𝑣3} , {𝑣1 , 𝑣2, 𝑣3} , {𝑣1 , 𝑣2}}  
, {𝑣2 , 𝑣3, 𝑣4} , {𝑣3 , 𝑣4}}.  

"𝜏𝐺
𝑐 = {Ø, 𝑉(𝐺), {𝑣1, 𝑣3, 𝑣4}, {𝑣1, 𝑣2, 𝑣4}, {𝑣1, 𝑣4}, {𝑣1}, {𝑣4}, {𝑣1, 𝑣2}, 

{𝑣3 , 𝑣4}}. 

𝒮𝒯𝐺 = {𝑉(𝐺), ∅, {𝑣2}, {𝑣3}, {𝑣1, 𝑣2}, {𝑣1, 𝑣3}, {𝑣2, 𝑣3}, {𝑣2, 𝑣4}, {𝑣3, 𝑣4}, 
{𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣2, 𝑣4}, {𝑣1, 𝑣3, 𝑣4}, {𝑣2, 𝑣3, 𝑣4}. 

𝒫𝒯𝐺 = {𝑉(𝐺), ∅, {𝑣1}, {𝑣2}, {𝑣3}, {𝑣4}, {𝑣1, 𝑣2}, {𝑣1, 𝑣3}, {𝑣1, 𝑣3}, {𝑣2, 𝑣3}, 
{𝑣2, 𝑣4}, {𝑣3, 𝑣4}, {𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣2, 𝑣4}, {𝑣1, 𝑣3, 𝑣4}, {𝑣2, 𝑣3, 𝑣4}". 

Hence (𝑉(𝐺), 𝒮𝒯𝐺 , 𝒫𝒯𝐺) is bi-supra topological graph. 

 
Figure1. Simple graph 

𝑣1 

𝑣3 

𝑣2 𝑣4 
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3.3 Definition: Let (𝑽(𝑮), 𝓢𝓣𝑮, 𝓟𝓣𝑮) be a bi-supra topological graph  

and suppose 𝑉(𝐻) be a subgraph of 𝑉(𝐺). So 𝑉(𝐻) was supposed to be:  

1- "(𝒮𝒯𝐺 , 𝒫𝒯𝐺)-supra open subgraph if  

𝑉(𝐻) = 𝑉(𝐾) ∪ 𝑉(𝐿) 𝑤ℎ𝑒𝑟𝑒 𝑉(𝐾) ∈ 𝒮𝒯𝐺  𝑎𝑛𝑑 𝑉(𝐿) ∈ 𝒫𝒯𝐺  . The  

complement of (𝒮𝒯𝐺 , 𝒫𝒯𝐺)-supra open subgraph is called  

(𝒮𝒯𝐺 , 𝒫𝒯𝐺)-supra closed subgraph. 

2-(𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗- supra open subgraph if  

𝑉(𝐻) = 𝑉(𝐾) ∪ 𝑉(𝐿) 𝑤ℎ𝑒𝑟𝑒 𝑉(𝐾) ∈ 𝒮𝒯𝐺  𝑎𝑛𝑑𝑉(𝐿) ∈ 𝒫𝒯𝐺  such that  

𝑉(𝐿) ∉ 𝒮𝒯𝐺  𝑜𝑟 𝑉(𝐾) ∈ 𝒫𝒯𝐺 , 𝑉(𝐿) ∈ 𝒮𝒯𝐺  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑉(𝐾) ∉ 𝒫𝒯𝐺 .  

The complement of (𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗-supra open subgraph is called  

(𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗-supra closed subgraph.  

3- bi- supra open subgraph if 𝑉(𝐺) = 𝑉(𝐾) where, 𝑉(𝐾) ∈ 𝜏𝐺. The  

complement of bi-supra open subgraph is called bi-closed subgraph".  

3.4 Proposition:  

1. "Every bi-supra open subgraph is (𝒮𝒯𝐺 , 𝒫𝒯𝐺)-supra open subgraph and every bi-

supra closed subgraph is (𝒮𝒯𝐺 , 𝒫𝒯𝐺)-supra closed subgraph but the convers is not 

true.  

2. Every (𝒮𝒯𝐺 , 𝒫𝒯)∗-supra open subgraph is (𝒮𝒯𝐺 , 𝒫𝒯𝐺)-supra open graph and Every 

(𝒮𝒯𝐺 , 𝒫𝒯)∗-supra closed subgraph is (𝒮𝒯𝐺 , 𝒫𝒯𝐺)-supra closed graph but the con-

verse is not true. 

3. The (𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗-supra open subgraph, bi-supra open subgraph are independent and 

The (𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗-supra closed subgraph, bi-supra closed subgraph are independ-

ent". 

3.5 Remark: The set of all (𝓢𝓣𝑮, 𝓟𝓣𝑮)[ res. (𝓢𝓣𝑮, 𝓟𝓣𝑮)∗, bi]-supra open  

subgraph and (𝒮𝒯𝐺 , 𝒫𝒯𝐺)[ res. (𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗, bi]-supra closed subgraph was 

require not essentially form a topological graph it was a supra topological 

graph.  

3.6 Example: From Example 3.2,  

"𝜏𝐺 = {𝑉 (𝐺) , Ø  , {𝑣2} , {𝑣3} , {𝑣2, 𝑣3} , {𝑣1 , 𝑣2, 𝑣3} , {𝑣1 , 𝑣2}} 

𝒮𝒯G = {V(G), ∅, {v2}, {v3}, {v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}, 

{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}}. 

𝒫𝒯G = {V(G), ∅, {v1}, {v2}, {v3}, {v4}, {v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, 

{v2, v4}, {v3, v4}, {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}}. 

"(𝒮𝒯G, 𝒫𝒯G)-open supra subgraph".  
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= {V(G), ∅, {v1}, {v2}, {v3}, {v4}, {v1, v2}, 

{v1, v3}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}, {v1, v2, v3}, {v1, v2, v4}, 

{v1, v3, v4}, {v2, v3, v4}}. 

(𝒮𝒯G, 𝒫𝒯G)-closed supra subgraph = {V(G), ∅, {v1}, {v2}, {v3}, {v4}, 

{v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}, {v1, v2, v3}, 

{v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}}. 

(𝒮𝒯G, 𝒫𝒯G)∗-supra open subgraph= {V(G), ∅, {v1}, {v4}, {v1, v4}}  

(𝒮𝒯G, 𝒫𝒯G)∗-supra closed subgraph = {V(G), ∅, {v2, v3, v4}, {v1, v2, v3},  

{v2, v3}}. 

Bi-supra open subgraph = {V (G) , Ø  , {v2} , {v3} , {v2, v3} , {v1 , v2, v3} , 

{v1 , v2}}. 

Bi-supra closed subgraph = {V (G) , Ø  , {v1, v3, v4} , {v1, v2, v4} , {v1, v4} , 

{v4} , {v3, v4}}". 

4 Some Concepts of Bi-supra topological graph 

4.1 Definition: "suppose 𝑮(𝑽 , 𝑬) be a graph, 𝑽(𝑯) be a subgraph from 𝑽(𝑮). 

"Then the graph closure of bi-supra topological graph (𝑽(𝑮), 𝓢𝓣𝑮, 𝓟𝓣𝑮)  

have the shape:  "𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)) = ∩ {𝑉(𝐾): 𝑉(𝐻) ⊆ 𝑉(𝐾), 𝑉(𝐾) 𝑖𝑠 𝑏𝑖 −
𝑠𝑢𝑝𝑟𝑎  𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}." 

4.2 Theorem: "suppose 𝑮(𝑽 , 𝑬) be a graph that contain bi-supra  

topological graph (𝑉(𝐺), 𝒮𝒯𝐺 , 𝒫𝒯𝐺)." If 𝐻 , 𝑊 are subgraphs from G; then: 

(1) 𝑉(𝐻)  ⊆  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)). 

(2) If 𝐻 ⊆  𝑊, then 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻))  ⊆  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝑊)). 

(3)" 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)  ∪  𝑉(𝑊))  =  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)  ∪  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝑊))." 

(4)" 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)  ∩  𝑉(𝑊))  ⊆  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻))  ∩  𝑏𝑖 − (𝑉(𝑊))." 

Proof : 1- Suppose that 𝑣 ∈  𝑉(𝐻), by definition 4.2.Then  

𝑉(𝐻) ∈ 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)). Therefore, 𝑉(𝐻) ⊆ 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)) 
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(2) From (1), 𝑉 (𝐻) ⊆ 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)), 𝑉(𝑊) ⊆ 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝑊)).  

Since, 𝐻 ⊆ 𝑊, then 𝑉(𝐻) ⊆ 𝑉(𝑊). Therefore,  

𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻))  ⊆  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝑊)).       

(4) From (1), 𝑉(𝐻) ⊆ 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)), 𝑉(𝑊) ⊆ 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝑊)). Since  

𝑉(𝐻)  ∩  𝑉(𝑊)  ⊆  𝑉(𝐻), 𝑉(𝐻)  ∩  𝑉(𝑊)  ⊆  𝑉(𝑊). Then 

"𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)  ∩  𝑉(𝑊))  ⊆  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)) , 

𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)  ∩  𝑉(𝑊))  ⊆  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝑊)). Therefore, 

𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)  ∩  𝑉(𝑊))  ⊆  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)  ∩  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝑊))."        

4.3  Definition: Let 𝑮(𝑽 , 𝑬) be a graph, 𝑯 be a subgraph from 𝑮.  

So the graph internal of bi-supra topological graph (𝑉(𝐺), 𝒮𝒯𝐺, 𝒫𝒯𝐺)  

had the shape: 

"𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)) = ∪ {𝑉(𝐿): 𝑉(𝐿) ⊆ 𝑉(𝐻), 𝑉(𝐿) 𝑖𝑠 𝑏𝑖 − 𝑠𝑢𝑝𝑟𝑎  
𝑜𝑝𝑒𝑛 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}." 

4.4 Theorem: Suppose 𝑮(𝑽 , 𝑬) be a graph that contain bi-supra  

topological graph (𝑉(𝐺), 𝒮𝒯𝐺 , 𝒫𝒯𝐺). If 𝐻 , 𝑊 are subgraphs from G; then: 

(1) If 𝐻 ⊆  𝐺, then  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻))  ⊆  𝑉(𝐻). 

(2) If 𝐻 ⊆  𝑊, then  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻))  ⊆  bi − 𝐼𝑛𝑡𝐺(𝑉(𝑊)). 

(3) 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)  ∩ 𝑉(𝑊)) = 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻))  ∩  bi − 𝐼𝑛𝑡𝐺(𝑉(𝑊)). 

(4) 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)) ∪ 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝑊)) ⊆ 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)  ∪  𝑉(𝑊)). 

Proof: (4) Suppose that, 𝑉(𝐻) , 𝑉(𝑊)  ⊆  𝑉(𝐺), since 

𝑉(𝐻)  ⊆  𝑉(𝐻)  ∪ 𝑉(𝑊), 𝑉 (𝑊)  ⊆  𝑉 (𝐻)  ∪  𝑉 (𝑊). Then  

𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻))  ⊆  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)  ∪  𝑉(𝑊)), 
𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝑊))  ⊆  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)  ∪  𝑉(𝑊)). Therefore, 

𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻))  ∪  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝑊))  ⊆  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)  ∪  𝑉(𝑊)).   

4.5 Example: From Example 3.6. Let 𝑽(𝑯) = {𝒗𝟏, 𝒗𝟑}.  

Bi-supra open subgraph=" {𝑉 (𝐺) , Ø  , {𝑣2} , {𝑣3} , {𝑣2, 𝑣3} , {𝑣1 , 𝑣2, 𝑣3} , 
{𝑣1 , 𝑣2}}." 

Bi-supra closed subgraph=" {𝑉 (𝐺) , Ø  , {𝑣1, 𝑣3, 𝑣4} , {𝑣1, 𝑣2, 𝑣4} , {𝑣1, 𝑣4} , 
{𝑣4} , {𝑣3, 𝑣4}}." 

Then 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)) = {𝑣1, 𝑣3, 𝑣4} and  

𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)) = {𝑣3}. 
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4.6 Remark: Suppose 𝑮(𝑽, 𝑬)  be a graph,  𝑯 is a subgraph from 𝑮.  

Then, 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)) ⊆ 𝑉(𝐻) ⊆ 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)) 

4.7 Proposition: "Let 𝑮(𝑽 , 𝑬) be a graph that contains bi-supra  

topological graph (𝑉(𝐺), 𝒮𝒯𝐺 , 𝒫𝒯𝐺)". If H be a subgraph from G, so: 

(1) 𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐺)  −  𝑉(𝐻))  =  𝑉(𝐺)  −  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)). 

(2) 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐺)  −  𝑉(𝐻))  =  𝑉(𝐺)  −  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)). 

Proof:  

(1) Suppose that 𝑣 ∈  𝑉(𝐺)  −  𝑉(𝐻), then 𝑣 ∈  𝑉(𝐺), 𝑣 ∉  𝑉(𝐻). By  

Theorem 4.4, 𝑣 ∉  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)). 
So, 𝑣 ∈  𝑉(𝐺)  −  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)). 

     Conversely,  

Assume that 𝑣 ∈  𝑉(𝐺)  −  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)), 𝑣 ∈  𝑉(𝐺) and by  

definition 4.3, 𝑣 ∉  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)), Then,  

𝑣 ∈  𝑉(𝐺), 𝑉(𝐾) ⊆  𝑉(𝐻), for every  

𝑣 ∈  𝑉(𝐺). So 𝑣 ∈  𝑉(𝐺), 𝑣 ∉  𝑉(𝐻). This means 𝑣 ∈  𝑉(𝐺)  −  𝑉(𝐻),  
so 𝑉(𝐺)  −  𝑉(𝐻)  ⊆  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐺)  −  𝑉(𝐻)). Therefore,  

𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐺)  −  𝑉(𝐻))  =  𝑉(𝐺)  − 𝑏𝑖 −  𝐼𝑛𝑡𝐺(𝑉(𝐻)).  

(2) Assume that 𝑣 ∈  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐺)  −  𝑉(𝐻)). Then by definition  

4.3, for every 𝑣 ∈  𝑉(𝐺) such that 𝑉(𝐿)  ⊆  𝑉(𝐺)  −  𝑉(𝐻). Then 

𝑉(𝐿) ⊆  𝑉(𝐺), 𝑉(𝐿) ⊈  𝑉(𝐻). This means 

𝑣 ∈  𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐺)) , 𝑉(𝐿)  ∩  𝑉(𝐻)  =  ∅. Then,  

𝑣 ∈  𝑉(𝐺), 𝑣 ∉  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)).  

Therefore, 𝑣 ∈  𝑉(𝐺)  −  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)).   

4.8 Definition: "Let 𝑮(𝑽, 𝑬) be a graph, 𝑯 be a subgraph from 𝑮.  

Then the graph exterior of bi-supra topological graph has the shape": 

 𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝐻)) = 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝐶 (𝑉(𝐻))) or  

𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝐻)) =  𝐶(𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻))) 

4.9 Theorem: "Let 𝑮(𝑽 , 𝑬) be a graph that contains bi-supra  

topological graph (𝑉(𝐺), 𝒮𝒯𝐺 , 𝒫𝒯𝐺). If 𝐻 , 𝑊 are subgraphs from G; then": 

(1) 𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝐻))  ∩  𝑉(𝐻)  =  ∅. 

(2) If 𝐻 ⊆  𝑊, then 𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝑊))  ⊆  𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝐻)). 

(3) 𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝐻) ∪ 𝑉(𝑊)) ⊆ 𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝐻)) ∩ 𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝑊)). 

4.10 Definition: Suppose 𝑮(𝑽, 𝑬) be a graph, 𝑯 be a sub-graph from 𝑮.  

So, the graph boundary of bi-supra topological graph has the shape: 

 𝑏𝑖 − 𝐵𝐺(𝑉(𝐻)) =  𝑏𝑖 − 𝐶𝑙𝐺(𝑉(𝐻)) − 𝑏𝑖 − 𝐼𝑛𝑡𝐺(𝑉(𝐻)). 
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4.11 Theorem: Suppose 𝑮(𝑽 , 𝑬) be a graph that contain bi-supra  

topological graph (𝑉(𝐺), 𝒮𝒯𝐺 , 𝒫𝒯𝐺). If H be a sub-graph from G so 

(1) bi − BG(V(H))  ∩  bi − IntG(V(H))  =  ∅. 

(2) bi − BG(V(H))  ∩  bi − ExtG(V(H))  =  ∅. 

(3) bi − IntG(V(H))  ∩  bi − ExtG(V(H))  =  ∅. 

(4) bi − IntG(V(H))  ∪  bi − ExtG(V(H))  ∪  bi − BG(V(H))  =  V(G). 

(5) ClG(V(H)  =  IntG(V(H))  ∪  BG(V(H)). 

Proof: 

(1) By definition 4.10, it`s clear.  

(2) Assume that 𝑉(𝐻)  ⊆  𝑉(𝐺), 𝑏𝑖 − 𝐵𝐺(𝑉(𝐻)) ∩  𝑏𝑖 − 𝐸𝑥𝑡𝐺(𝑉(𝐻)),  

by theorem 4.9 

→ bi − BG(C(V(H)))  ∩  bi − IntG(C(V(H))) =  ∅, 

= bi − BG(G −  V (H))  ∩  bi − IntG(C(G −  V (H)))  =  Ø.  

(3) Assume that V(H)  ⊆  V(G), bi − IntG(V(H))  ∩  bi − ExtG(V(H)) 

= bi − IntG(V(H)) ∩ bi − IntG(C(V(H))) ⊆ V(H) ∩ bi − IntG(V(H)), 

= bi − IntG(V(H))  ∩  (C(bi − ClG(V(H))) 

= bi − IntG(V(H))  ∩  (G −  bi − ClG(V(H))), by distributing  

intersection,  

→ (bi − IntG(V(H))  ∩  G)  − (bi − IntG(V(H))  ∩  bi − ClG(V(H)) 

= bi − IntG(V(H))  −  bi − ExtG(V(H))  =  ∅. 

(4) Assume that V(H)  ⊆  V(G), 

bi − IntG(V(H))  ∪  bi − ExtG(V(H))  ∪  bi − BG(V(H)) 

= bi − ClG(V(H))  ∪  C(bi − ClG(V(H)))  =  G. 

(5) Suppose v ∈  V(H),   

bi − BG(V(H))  ∪  bi − IntG(V(H)) =  (bi − ClG(V(H))  − 

 bi − IntG(V(H)))  ∪ bi − IntG(V(H)). Therefore,  

bi − ClG(V(H)  =  bi − IntG(V(H))  ∪  bi − BG(V(H)). 
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4.12 Example: From example 3.6, let 𝑽(𝑯) = {𝒗𝟏, 𝒗𝟑}. Then 

bi − ClG(V(H)) = {v1, v3, v4} and  

bi − IntG(V(H)) = {v3}. 

bi − ExtG(V(H)) = {v2}. 

b𝑖 − 𝐵𝐺(𝑉(𝐻)) = {𝑣1, 𝑣4}. 

Definition: Suppose 𝑮(𝑽 , 𝑬) be a graph, 𝑯 be a sub-graph from  

𝐺, and (𝑉(𝐺), 𝒮𝒯𝐺, 𝒫𝒯𝐺) bi-supra topological graph is called: 

1- (𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗𝐶𝑙𝐺(𝑉(𝐻)) =∩ {𝑉(𝐾): 𝑉(𝐻) ⊆ 𝑉(𝐾), 𝑉(𝐾) 𝑖𝑠  

(𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗ − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}.  

2- (𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗𝐼𝑛𝑡𝐺(𝑉(𝐻)) =∪ {𝑉(𝐿): 𝑉(𝐿) ⊆ 𝑉(𝐻), 𝑉(𝐿) 𝑖𝑠  

(𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗ − 𝑜𝑝𝑒𝑛 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}.  

4.13 Example: From example 3.6, let 𝑽(𝑯) = {𝒗𝟏, 𝒗𝟑}. Then  

(𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗𝐶𝑙𝐺(𝑉(𝐻)) =  {𝑣1, 𝑣2, 𝑣3}. 

(𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗𝐼𝑛𝑡𝐺(𝑉(𝐻)) = {𝑣1}. 

4.14 Proposition: Suppose 𝑮(𝑽, 𝑬)  be a graph,  𝑯 is a sub-graph from 𝑮.  

Then, (𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗𝐼𝑛𝑡𝐺(𝑉(𝐻)) ⊆ 𝑉(𝐻) ⊆ (𝒮𝒯𝐺 , 𝒫𝒯𝐺)∗𝐶𝑙𝐺(𝑉(𝐻))  

5 Conclusions 

The main result in this paper is to explain the relations between bi-supra Topologi-

cal Space and topological graph theory which illustrated by many proposition as 3.4 

and some examples 3.6 and another theorem by 4.2,4.4 and 4.9 by these theorems can 

study more of subject in graph theory. 
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Abstract— The goal of this study is to investigate the effect of couple stress 

on Powell-Eyring fluid peristaltic transport in an inclined asymmetric channel 

using porous medium. Peristaltic motion of a magnetohydrodynamic Powell-

Eyring fluid in inclined asymmetric channel with porous medium, medium is in-

vestigated in the present study. The modeling of mathematic is created in the 

presence of effect of couple stress, using constitutive equations following the 

Powell-Eyring fluid model. In flow analysis, assumptions such as long wave 

length approximation and low Reynolds number are utilized. Closed form for-

mulas for the stream function and mechanical efficiency are created. On the chan-

nel walls, pressure rise per wave length has been calculated numerically. The 

effects of the Hartman number (Ha), Darcy number (Da), material fluid parame-

ter (w), inclination of magnetic field (β), amplitude ratio (∅), The effects of the 

Couple Stress on axial velocity and entrapment are investigated in detail and 

graphically shown. 

Keywords— Couple Stress, Powell-Eyring Fluid, Porous Medium 

1 Introduction 

The peristaltic motion is a series of contractions and diastoles that push fluid along 

the path, making it easier to move. Peristalsis is a natural property of smooth muscles 

and tubes that carry fluid through vessels as a result of motor activity in numerous bio-

logical systems, the passage of urine from the kidney to the bladder, the movement of 

food through the gastrointestinal tract, and the migration of eggs through the fallopian 

tube are all examples of this movement [1]. Many researchers study peristaltic transport 

with heat transfer (with or without porous medium) in a range of subjects and applica-

tions, including: [2],[3] investigated the combined influence of velocity slip, tempera-

ture, and density jump conditions on MHD peristaltic transport of a Carreau fluid in a 

non-uniform channel [4], to investigate the impact of Heat generation on MHD peri-

staltic flow in a nanofluid with compliant walls. Pair fluid behavior studies are essential 

mailto:ali.khalifa1203a@sc.uobaghdad.edu.iq
mailto:liqaa.hummady@sc.uobaghdad.edu.iq


Wasit Journal of Computer and Mathematics Science Vol. (1) No. (2) (2022) 

107 

 

for understanding a range of physical issues, and they can better describe the behavior 

of rheologic ally complicated fluids including liquid crystals, polymeric suspensions 

with long chain molecules, lubrication, and human/sub-human blood. A couple-stress 

fluid is a non-Newtonian fluid with specified particle sizes. In classical continuum the-

ory, the effects of particle sizes are not examined. Peristaltic transmission of couple-

stress fluid has been studied recently [5,6,7, 8]. Despite the fact that there is always 

some slide in real systems, several of the experiments on couple-stress fluids defined 

above employed blood as a couple stress fluid and were carried out under no slip con-

ditions. Peristalsis is a natural property of smooth muscles and tubes that carry fluid 

through vessels as a result of motor activity in numerous biological systems. The gov-

erning equations for continuity and motion have been constructed, and analytic solu-

tions have been performed using the assumptions of a long wave-length and a low 

Reynolds number. The effect of emerging parameters on the velocity and pressure 

could be studied and the phenomenon of trapping also discussable.  

2 Mathematical Formulation for Asymmetric Flow 

Consider the flow of an incompressible "Powell-Eyring fluid" in a two-dimensional 

asymmetric channel of width (d + d'). The flow is caused by an infinite sinusoidal wave 

line moving forward and with constant velocity c along the channel's walls . An asym-

metric channel is formed by varying wave amplitudes, phase angles, and channel 

widths. 

   The walls geometries get modeled as 

 h1(x, t) = d − a1 sin[
2π

λ
(x − ct)] upper wall  (1) 

 h2(x, t) = −d′ − a2 sin[
2π

λ
(x − ct) + ∅] lower wall  (2)  

Where (a1), (a2),(d),(d'), (c ) , (t)  are the wave amplitudes, channel width, wave-

length, and wave speed, (0 ≤ ∅. ≤ 𝜋) is the phase difference and thus the rectangular 

coordinate system gets chosen with the ( X. -axis ) parallel to the wave propagation 

direction and the ( Y.-.axis ) perpendicular to the wave propagation direction. It's worth 

noting that (∅ =0) corresponds to a symmetric channel with out of phase waves, 

whereas( ∅= ) corresponds to a symmetric channel with in phase waves. (a1), (a.2), 

(d.), (d') and (∅) also meet the following criteria ."It is noticed that (∅=0) corresponds 

to symmetric channel with waves out of phase and for (∅= ) the waves are in phase". 

Further (a1), (a2) , (d), (d′) and (∅) satisfy the condition": 

a1
2+. a2

2 + 2a.1.a.2 cos𝑜(∅) ≤  (d4 + d′)2. 
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Fig. 10. Cartesian Dimensional Inclined Asymmetric Channels Coordinates. 

It's also assumed that there's no longitudinal movement of the walls. This assumption 

limits wall deformation but does not imply that the channel is stiff for longitudinal mo-

tions. 

3 Basic equation 

The fluid follows the Powell Erring model, and the Cauchy stress tensor,. of it is as 

follows: [9] . 

 τ ̅ = −PI +  S̅, (3) 

 S ̅ =  [µ +  
1

βγ̇
 sinh−1  (

γ̇

c1
)] A11, (4) 

 γ ̇ = √
1

2
tras(A11)2   (5) 

  A11 = ∇V̅ + (∇V̅)T  (6) 

    Where (S̅)expresses the extra tensor's stress, I the identity tensor, ∇̅=(∂X̅ , ∂Y ̅, 0) 

the gradient vector, (β,c1) the Powell-Eyring fluid's martial characteristics, (P̅) the flu-

id's pressure, and (µ) the dynamic viscosity. 

  The terms sinh−1 is approximated as 

 sinh−1  (
γ̇

c1
) =

γ̇

c1
−

γ̇3

6 c1
3 ,|

γ̇5

 c1
5| ≪ 1  (7)  

s̅x̅x̅ = 2( μ +  
1

β c1
)u̅x̅ − 

1

3 β c1
3 [2u̅x̅

2 + (v̅x̅ + u̅y̅)
2

+ 2v̅2
y̅]u̅x̅, (8) 

s̅x̅ y̅ = ( μ +  
1

β c1
)(v̅x̅ + u̅y̅) − 

1

6 β c1
3 [2u̅x̅

2 + (v̅x̅ + u̅y̅)
2

+ 2v̅2
y̅](v̅x̅ + u̅y̅), (9) 

And s̅y̅y̅ = 2( μ +  
1

β c1
)v̅y̅ −  

1

3 β c1
3 [2u̅x̅

2 + (v̅x̅ + u̅y̅)
2

+ 2v̅2
y̅]v̅y̅. (10)  
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4 The governing equation 

With in laboratory frame (x ̅, , y ̅) , the governing equations inside an inclined channel 

with inclined magnetic field on Powel-Eyring fluid can be written as the continuous 

equation: 

 
∂ u̅

∂x̅
+

∂ v̅

∂y̅
= 0. (11) 

The x ̅– component of moment equation : 

ρ ( 
∂ u̅

∂t̅
+ u̅

∂ u̅

∂x̅
+ v̅

∂ u̅

∂y̅
) =  −

∂p̅

∂x̅
+

∂ 

∂x̅
s̅x̅x̅ +

∂ 

∂y̅
s̅x̅y̅ − σβ0

2cosβ(u̅ cosβ − v̅ sinβ) −
𝜇

k̅
 u̅ − 𝜇1  ∇

4 u̅ + ρ g sin 𝛼∗  (12)  

The y ̅– component of moment equation : 

ρ ( 
∂ v̅

∂t̅
+ u̅

∂ v̅

∂x̅
+ v̅

∂ v̅

∂y̅
) =  −

∂p̅

∂y̅
+

∂ 

∂x̅
s̅x̅y̅ +

∂ 

∂y̅
s̅y̅y̅ − σβ0

2sinβ(u̅ cosβ − v̅ sinβ) −
𝜇 

k̅
v̅ −𝜇1  ∇

4 v̅ −  ρ g cos 𝛼∗.   (13) 

Let  ∇2= ( 
∂2 

∂x̅2 +
∂2 

∂y̅2)    then   ∇4= (∇2)2 

  where the (ρ) , (u̅) , (v̅) , (y  ̅ ), (p̅) , (μ ), (k ̅) , (B0) are" the fluid density ,axial ve-

locity , transverse velocity, transverse coordinate , pressure, viscosity , material con-

stant, permeability parameter, constant magnetic field, is the electrical conductivity. 

    This flow is unsteady with in laboratory frame (x ̅, y ̅), whereas the motion is 

steady inside a coordinate system flowing there at wave speed (c) in the wave framer 

(x ̅, y ̅). 

5 Dimensionless parameter 

    We setup  the following non-dimensional quantities to perform the non-dimen-

sional analysis: 

x =
1

λ
x̅  , y =

1

d
y̅ ,   u =

1

c
u̅ , v =

1

δ c
v̅ ,  p =

d2

λ μ c
 p̅ , t =

 c

λ
t̅  , h1 =

1

d
h1
̅̅ ̅  ,  h2 =

1

d
h2
̅̅ ̅ , 

δ =
d

λ
 , ∅ =

b

d
,  Re =

ρ c d 

 μ 
,  Ha = d √

𝜎

𝜇
 β0 ,Da =

 k̅

d2 , w =
1

 μ β c1 
, A =

w 

 6 
( 

c

c1  d
 )2 ,  α =

d√
μ

μ1
 , Fr =

c2

dg
, sxx =

λ

μ c
s̅x̅x̅, sxy =

d

μ c
s̅x̅y̅ , syy =

d

μ c
s̅y̅y̅, β1 =

β∗

d 
 .(14)     

    where (δ) is the wave number, (Ha) is the Hartman number, (Da) Darcy number, 

(Re) is the Renold number, (Fr) Froude. Number, (∅) is the amplitude ratio, (w) is the 

dimensionless permeability of the porous medium parameter, (w, A) material fluid pa-

rameters, (α) couple stress, ( α∗) Inclination. angle of the channel. to the horizontal 

axis, (β1) represent the dimensionless slip parameters. 

 Then, in view of Eq. (14), Eq. (1),(2),and (8) to (13) take the form : 

 hi1(x, t) = 1 − a sin. X, (15) 
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 hi2(x, t) = −d∗ − b sin i[ X + ∅]. (16)  

sxx = 2(1 + w)
∂u

∂x
− 2A [2δ2 ( 

∂u

∂x
 )

2

+ (δ2  
∂v

∂x
+

∂u

∂y
 )

2

+ 2δ2 ( 
∂v

∂y
 )

2

]
∂u

∂x
  (17) 

 sxy = (1 + w) (δ2  
∂v

∂x
+

∂u

∂y
 ) − A [2δ2 ( 

∂u

∂x
 )

2

+ (δ2  
∂v

∂x
+

∂u.

∂y
 )

2

+

2δ2 ( 
∂v

∂y
. )

2

] (δ2  
∂v

∂x
+

∂u.

∂y
 )  (18) 

syy = 2(1 + w) δ
∂v

∂y
− 2Aδ [2δ2 ( 

∂u

∂x
 )

2

+ (δ2  
∂v

∂x
+

∂u

∂y
 )

2

+ 2δ2 ( 
∂v

∂y
 )

2

]
∂v

∂y
 (19) 

 
∂u.

∂x
+

∂v.

∂y
= 0 (20) 

Re δ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = −

∂p

∂x
+ δ2 ∂

∂x
sxx +

∂

∂y
sxy − Ha2 cosi β (u cos β −

δv sini β) −
1

Da
u −

1

α2 (δ4  
∂4 

∂x4 + 2δ2 ∂4 

∂x2 ∂y2 +
∂4 

∂y4) u +
Re

Fr
 sin α∗ (21) 

Re δ3(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) = −

∂p

∂y
+ δ2 ∂

∂x
sxy + δ

∂

∂y
syy + Ha2 sini β (δu cos iβ −

δ2 v sini β) − δ2 1

Da
v −

1

α2 δ2 (δ4  
∂4 

∂x4 + 2δ2 ∂4 

∂x2 ∂y2 +
∂4 

∂y4) −  δ
Re

Fr
cos α∗  (22) 

The relations connect the stream function (. ψ.) to the velocity components. 

 
u. =

∂ψ.

∂y
, v = −

∂ψ.

∂x
 ,  (23) 

 Substituted Eqs.(23) in Eqs. (17 ) to Eqs. (22) respectively, 

sxx = 2(1 + w)
∂2ψ

∂x ∂y
− 2A [2δ2 ( 

∂2ψ

∂x ∂y
 )

2

+ (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+

2δ2 (− 
∂2ψ

∂x ∂y
 )

2

]
∂2ψ

∂x ∂y
   (24) 

sxy = (1 + w) (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  ) − A [2δ2 ( 
∂2ψ

∂x ∂y
 )

2

+ (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+

2δ2 (− 
∂2ψ

∂x ∂y
 )

2

] (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  ) (25)  

syy = −2(1 + w)δ
∂2ψ

∂x ∂y
− 2Aδ [2δ2 ( 

∂2ψ

∂x ∂y
 )

2

+ (−δ2  
∂2ψ

∂x2 +
∂2ψ

∂y2  )
2

+

2δ2 (− 
∂2ψ

∂x ∂y
 )

2

]
∂2ψ

∂x ∂y
  (26) 

 
∂2ψ

∂x ∂y
−

∂2ψ

∂x ∂y
= 0 (27) 
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Re δ(
∂2ψ

∂t ∂y
+

∂3ψ

∂x ∂y2 −
∂3ψ

∂x ∂y2) = −
∂p

∂x
+ δ2 ∂

∂x
sxx +

∂

∂y
sxy − Ha2 cos β (

∂ψ

∂y
cos β +

 δ
∂ψ

∂x
 sin β) −

1

Da
 

∂ψ

∂y
−

1

α2 (δ4  
∂4 

∂x4 + 2δ2 ∂4 

∂x2 ∂y2 +
∂4 

∂y4)
∂ψ

∂y
+

Re

Fr
 sin α∗ (28) 

 Re δ3(−
∂2ψ

∂t ∂y
+

∂3ψ

∂x2 ∂𝑦
−

∂3ψ

∂x2 ∂𝑦
) = −

∂p

∂y
+ δ2 ∂

∂x
sxy + δ

∂

∂y
syy +

Ha2 sin β (δ 
∂ψ

∂y
cos β + δ2  

∂ψ

∂x
sin β) + δ2 1

Da

∂ψ

∂x
+

1

α2 δ2 (δ4  
∂4 

∂x4 + 2δ2 ∂4 

∂x2 ∂y2 +

∂4 

∂y4)
∂ψ

∂x
−  δ

Re

Fr
cos α∗  (29) 

 The wave frame's dimensionless boundary conditions are [10]:   

 ψ =
F

2
 ,  at y= h.1  ,  ψ = −

F

2
 ,  at y= h.2, 

 
∂ψ

∂y
+ β1

∂2ψ

∂y2 = −1 at y= h.1,   
∂ψ

∂y
− β1

∂2ψ

∂y2 = −1 at y= h.2,   

  

 
∂3ψ

∂𝑦3 = 0  at  y= h.1,   
∂3ψ

∂𝑦3 = 0  at  y= h.2. (30)  

  In the wave frame, ( F ) is the dimensionless temporal mean flow rate. Through the 

expression, it is related to the dimensionless temporal mean flow rate (Q)  in the labor-

atory frame. [58] 

 Q =F. +1 + d∗ .  (31) 

h1(x) and h2(x) have dimensionless forms: 

 h1(x) = 1+a sin (X ),   h2(x) = -d∗- b sin.(X +∅)  (32) 

 where  (a) , (b).,( ∅). and (d∗). satisfy. [10]: 

a2 + b2 + 2. ab cos( ∅. ) ≤ (1 + d∗)2. 

6 Effect of couple - stress 

A relationship here between couple stress parameter (α) and the material fluid pa-

rameters (A) would be discovered in this section. 

This relationship will aid us in simplifying the problem's solution strategy.  Because, 

as mentioned in the previous chapter, finding the zero and first-order solutions is re-

quired seeing the effect of any and all parameters that present in the problem. However 

, using the relationship between the couple stress parameter  and the material fluid pa-

rameters we need  to find the zero order only .  

From dimensionless the material fluid parameters : 
Let   A =

w 

 6 
( 

c

c1  d
 )2   

then  
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 d = √
w 

 6A 
( 

c

c1  
 ) , (33) 

 since   α = d√
μ

μ1
  (34) 

substitute Eq.(34) into  Eq.(34 ), we get  α = √
wμ 

 6Aμ1 
( 

c

c1  
 ) 

 α2 =
wμ 

 6Aμ1 
( 

c

c1  
 )2   and   

1

α2 =
6Aμ1 

  wμ
( 

c1 

c 
 )2  (35) 

7 Solution of the problem 

Substitute the terms (31) in to Eqs. (24) to Eqs. (29), together with the boundary 

conditions Eqs. (30) Since δ ≤ 1, and using the approximation of a long wavelength 

and a low Reynolds number. For the appearance of the couple stress parameter in the 

equation, the solution is limited to the zero order by giving all the parameters required 

to solve the problem and find the results,  we get the  motion equation  in the  terms of 

stream function which  is  

 

 ψyyyy − 𝜉 ψyy −
1

α2 ψyyyyyy  = 0.  (36) 

  𝜉 =
Ha2 cos2 β+ 

1

Da

w+1
 (37)  

  η =  
1

1+w
 (38) 

The solution of the momentum equation.is straight forward. and can be written as 

ψ = √2(
√2e

y
√

α(α−√α2−4ζη)

η

√2 ηc1

α(α−√α2−4ζη)
+

√2e
−

y
√

α(α−√α2−4ζη)

η

√2 ηc2

α(α−√α2−4ζη)
+

√2e

y
√

α(α+√α2−4ζη)

η

√2 ηc3

α(α+√α2−4ζη)
+

√2e
−

y
√

α(α+√α2−4ζη)

η

√2 ηc44

α(α+√α2−4ζη)
) + c5 + yc6 (39) 

 From Eq. (25) in Eq. (28) we get : 

∂p

∂x
= (w + 1)ψyyy − (w + 1)𝜉 ψy −

1

α2 ψyyyyy  +
Re

Fr
 sin ∝∗.  (40) 

 −
∂p

∂y
= 0  (41) 
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   The pressure rise per wave length ( ∆p. ) is defined. as 

 Δp = ∫ .
∂p

∂x

1

0
dx  . (42) 

  In the fixed frame, this axial velocity component is given as  

 u(x., y., t.)=1+ ψy.  (43) 

8 Results and Discussion  

"   To study the effect of physical parameters such as Effect of Hartman number 

(Ha), Darcy number (Da), Renold number (Re), Froude number (𝐅𝐫) ,couple stress (𝛂), 

Inclination angle of the channel to the horizontal axis (𝜶∗), inclination of magnetic field 

(𝛃), represent the dimensionless slip parameters (𝛃𝟏), material fluid parameter (w) and 

amplitude ratio (∅). we have plotted the axial velocity (u), and stream function (𝛙) in 

figs. 2.-15. are illustrated using the software MATHEMATICA . 

8.1 Velocity distribution  

 For varying values of (u), difference in axial velocity throughout the channel . "The 

effect different values of  (Ha), (Da), (β), (β1),(w),(α) and (∅) on axial velocity (u) are 

explained in Figs. 2.- 8."The behavior of velocity distribution is parabolic as seen in 

figures. Figs. 2.,5. shows that the axial velocity with increasing (Ha) and (β1) increases 

in the central region and the boundary of the channel wall. Fig.3. displayed the influ-

ence of (Da) on the axial velocity, it is noticed that at the walls of the channel, the axial 

velocity decreases with an increase of (Da), and decreases at the center of the channel. 

Fig. 4. noted that the axial velocity do not change at increasing in (β). Figs 6.,7. the 

axial velocity increasing with increasing (α) and (w) increasing in the central region 

and not change in the boundary of the channel wall. From fig.8. At increasing in (∅), 

the axial velocity falls in the middle region and the channel's boundary right, while 

increasing in the channel's boundary left. 
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Fig. 9. Variation of velocity for different 

values of Da when  Ha=3, 

β=0.5,β1=4 ,α=0.4,w= 3,∅= 0.5 

,a= 0.2 , b= 0.2, d*= 0.5 ". 

Fig. 10.Variation of velocity for different 

values of Ha when Da=3,β=0.5, 

β1=4, α= 0.4,w= 3,∅= 0.5 ,a= 0.2 , 

b= 0.2 , d*= 0.5 ". 

Fig. 5. Variation of velocity for different val-

ues of β1 when Ha=3,Da=3, β=0.5,α= 

0.4, w= 3 , ∅= 0.5 ,a= 0.2 , b= 0.2 , 

d*= 0.5". 

Fig. 11.Variation of velocity for different values 

of β when Ha=3 , Da=3, β1=4, α= 0.4, 

w= 3 , ∅= 0.5 ,a= 0.2 , b= 0.2 , d*= 0.5" 

. 

Fig. 13.Variation of velocity for different 

values of α when Ha=3 ,Da=3, 

β=0.5, β1=4 ,w= 3 ,∅= 0.5 ,a= 0.2 , 

b= 0.2 , d*= 0.5". 

Fig. 14.Variation of velocity for different 

values of w when Ha=3 , Da=3, 

β=0.5, β1=4 ,α= 0.4,∅= 0.5 ,a= 0.2 

,b= 0.2 ,d*= 0.5". 
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8.2  Trapping phenomenon 

Closed stream lines trap the amount of fluid known as bolus inside the channel tube 

near the walls in peristaltic flows, and this trapped bolus pushes forward in the direction 

of wave propagation. In figs 9. – 15. the stream lines are plotted at various values of  

Ha, Da, 𝛃, 𝛃𝟏, 𝛂 ,w and ∅  . Figs 9. , 14.  the exhibits that the trapping exist for both 

upper and lower walls , we observe that size of trapping bolus decreases with increases 

(Ha) and (w) . Figs 10. and 11.  the exhibits that the trapping exist for both upper and 

lower walls , we observe that size of trapping bolus no change with increases (Da) and 

(𝛃) . Figs 12. , 13. show that trapping exists for both the upper and lower walls, and 

that the size of the trapping bolus lowers and expands as (𝛃𝟏) and (𝛂) increase. Fig 15. 

the exhibits that the trapping exist for both upper and lower walls, we observe that size 

of trapping bolus increases with increases (∅) and open channel with (∅ = 𝛑) ". 

 

  

  

Figure 8."Variation of velocity for different values of ∅ when Ha=3, Da=3, β=0.5, β1=4,    

α= 0.4, w= 2,a= 0.2 , b= 0.2 , d*= 0.5". 

Fig. 15.Stream function in the wave frame of Ha such that  in (a)Ha=3,(b) Ha=6,(c)Ha=9, 

in Da =2, β=0.5, β1 =4, 𝛼 = 0.4, w=2, ∅ = 0.5, a = 0.2, b = 0.2, d∗ = 0.5" . 

(a) (b) (c) 
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Fig. 10.Stream function in the wave frame of Da  such that  in (a)Da=2, (b) Da=4,  (c) 

Da=6, in Ha=3, β=0.5, β1 =4, 𝛼 = 0.4, w=2, ∅ = 0.5, a = 0.2, b = 0.2, d∗ = 0.5" . 

Fig.;11. "stream function in the wave frame of 𝛃  such that  in (a) β =0.5, (b) β =
𝜋

3
 , (c) β=

𝜋

2
, 

in Ha =3, Da = 2, β1  = 4, 𝛼 = 0.4, w = 2, ∅ = 0.5, a = 0.2, b = 0.2, d∗ = 0.5" . 

 

Fig. 12. "stream function in the wave frame of 𝛃𝟏  such that  in (a) β1 =4, (b) β1 =8  , (c) 
β1=12 , in Ha =3, Da = 2, β = 0.5, 𝛼 = 0.4, w = 2, ∅ = 0.5, a = 0.2, b = 0.2, d∗ = 0.5" . 
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9 Conclusions 

In light of this studies, some of the more intriguing findings have been described, 

with a focus on the study Effect of Couple Stress on Peristaltic Transport of Powell-

Fig.;13"stream function in the wave frame of 𝛂 such that  in (a) 𝛼 =0.4 , (b) 𝛼 =1.6 ,  (c) 𝛼 

=2.8 , in Ha =3,  Da =2, β=0.5, β1 =4, w=2, ∅ = 0.5, a = 0.2, b = 0.2, d∗ = 0.5". 
 

Fig.;14."stream function in the wave frame of w such that  in (a)w= 2, (b)w =6, (c)w=10   in 

Ha =3 , Da =2, β=0.5, β1 =4, 𝛼 = 0.4, ∅ = 0.5, a = 0.2, b = 0.2, d∗ = 0.5 ". 

 

Fig. 15. stream function in the wave frame of ∅ such that  in (a)∅=0.5,(b)∅= 
𝜋

2
, (c)∅=𝜋 in Ha 

=3 , Da =2, β=0.5, β1 =4, 𝛼 = 0.4, w=2, a = 0.2, b = 0.2,  d∗ = 0.5" . 
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Eyring Fluid Peristaltic flow in Inclined Asymmetric Channel with Porous Medium 

The results are discussed through graphs , as follows :   

• By increasing (Ha) and (β1) increases  in the central region and the boundary 

of the channel wall but the opposite occur for increasing (Da).   

• The axial velocity no change near the wall while it   increases  at the center 

of the channel by increasing (α) and (w) . Furthermore increasing  (β) has 

not effected on the axial velocity.  

• At increasing in ( ∅.) , the axial velocity falls in the middle region and the 

channel's boundary right, while increasing in the channel's boundary left. 

• The size of trapped bolus decreases with increasing (Ha) and (w) , we observe 

that size of trapping bolus no change with increases (Da) and (β) ".  

• Demonstrate "that trapping exists for both the upper and lower walls, and that 

the size of the trapping bolus decreases and increases as (β1) and (α) rise" .   

• The exhibits show that the trapping is present on both the upper and lower 

sides, we observe that size of trapping bolus increases with increases ( ∅. ) 

and open channel with  ( ∅ = π) . 
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