Optimizing Poisson-Lindley Parameter Estimation: LQM and Reliability Analysis Applied to Guinea Pig Survival Data

Authors

  • Sameera Othman Iraqi

DOI:

https://doi.org/10.31185/wjcms.261

Keywords:

Poisson Lindley, Reliability, Linear Quantile-Moment

Abstract

The main objective of this work is to estimate the scale parameter of the Poisson Lindley distribution by means of multiple approaches, such as Poisson Linear Quantile-Moment and Maximum Likelihood. Based on mean square error criteria(MSE), Akaike information criterion (AIC), and Bayesian information criterion (BIC), Linear Quantile-Moment is the most efficient estimator among these techniques. The study focuses on reliability analysis and investigates the probability functions of the distribution to create a theoretical framework for parameter estimation by Using R programming language for in-depth analysis. Through simulation and real data analysis, several estimation techniques are compared and contrasted, demonstrating the superiority of the Linear Quantile Moment approach in terms of accuracy and model fit. The Poisson Lindley Distribution parameter estimation is improved in this work, which has implications for environmental research, finance, and epidemiology. Moreover, variance estimates for the known parameters and the related Kolmogorov–Smirnov (K–S) statistics, along with their corresponding p-values for the Poisson-Lindley Distribution (PLD), are analyzed using actual data on guinea pig survival times under various tubercle bacilli dosages. An observation indicating a strong fit with the optimal estimator with (LQM=4.190217) and the lowest MSE (78.71956) is made in light of the small K–S distance and the significant p-value for the test.

Downloads

Download data is not yet available.

References

I. Elbatal, M. S. Rahman, and F. M. Al-Marzouki, "The generalized Lindley distribution: Properties and applications," Commun. Stat. - Theory Methods, vol. 42, no. 12, pp. 2246–2262, 2013.

A. A. Al-Babtain, A. M. Gemeay, and A. Z. Afify, "Estimation methods for the discrete Poisson-Lindley and discrete Lindley distributions with actuarial measures and applications in medicine," J. King Saud Univ.-Sci., vol. 33, no. 2, p. 101224, 2021. DOI: https://doi.org/10.1016/j.jksus.2020.10.021

F. M. Alghamdi, M. Ahsan-ul-Haq, M. N. S. Hussain, E. Hussam, E. M. Almetwally, H. M. Aljohani, M. S. Mustafa, E. Alshawarbeh, and M. Yusuf, "Discrete Poisson Quasi-X-Lindley distribution with mathematical properties, regression model, and data analysis," J. Radiat. Res. Appl. Sci., vol. 17, no. 2, p. 100874, 2024. DOI: https://doi.org/10.1016/j.jrras.2024.100874

T. T. Thach and R. Briš, "MLE versus MCMC estimators of the mixture of failure rate model," in Safety and Reliability – Safe Societies in a Changing World, CRC Press, pp. 937–944, 2018. DOI: https://doi.org/10.1201/9781351174664-118

M. Holla, "On a Poisson-inverse Gaussian distribution," Metrika, vol. 11, no. 1, pp. 115–121, 1967. DOI: https://doi.org/10.1007/BF02613581

M. Sankaran, "The discrete Poisson-Lindley distribution," Int. Biometric Soc., vol. 26, no. 1, pp. 145–149, 1970. DOI: https://doi.org/10.2307/2529053

E. Mahmoudi and H. Zakerzadeh, "Generalized Poisson-Lindley distribution," Commun. Stat. - Theory Methods, vol. 39, no. 10, pp. 1785–1798, 2010. DOI: https://doi.org/10.1080/03610920902898514

H. Zamani, N. Ismail, and P. Faroughi, "Poisson-weighted exponential univariate version and regression model with applications," J. Math. Stat., vol. 10, no. 2, pp. 148–154, 2014. DOI: https://doi.org/10.3844/jmssp.2014.148.154

S. A. Othman, "Enhancing reliability engineering through Weibull distribution in R," Al-Rafidain J. Comput. Sci. Math., vol. 18, no. 1, 2024.

S. A. Othman, K. M. T. Omar, and S. T. Abdulazeez, "Reliability analysis and statistical fitting for the transmuted Weibull model in R," vol. 72, no. 2, pp. 161–177, 2023.

C. Chesneau, L. Tomy, and G. Veena, "The Poisson-Modified Lindley Distribution," Appl. Math. E-Notes, vol. 22, pp. 18–31, 2022.

W. A. H. Al-Nuaami, A. A. Heydari, and H. J. Khamnei, "The Poisson–Lindley distribution: Some characteristics, with its application to SPC," Mathematics, vol. 11, no. 11, p. 2428, 2023. DOI: https://doi.org/10.3390/math11112428

D. V. Lindley, "Fiducial distributions and Bayes' theorem," J. R. Stat. Soc., Ser. B (Methodological), pp. 102–107, 1958. DOI: https://doi.org/10.1111/j.2517-6161.1958.tb00278.x

M. Ghitany and D. Al-Mutairi, "Estimation methods for the discrete Poisson–Lindley distribution," J. Stat. Comput. Simul., vol. 79, pp. 1–9, 2009. DOI: https://doi.org/10.1080/00949650701550259

E. Altun, "A new model for over-dispersed count data: Poisson quasi-Lindley regression model," Math. Sci., vol. 13, pp. 241–247, 2019. DOI: https://doi.org/10.1007/s40096-019-0293-5

D. Karlis and E. Xekalaki, "Mixed Poisson distributions," Int. Stat. Rev., vol. 73, no. 1, pp. 35–58, 2005. DOI: https://doi.org/10.1111/j.1751-5823.2005.tb00250.x

S. A. Othman, S. T. Qadir, and S. T. Abdulazeez, "Comparative analysis of scaling parameter estimation for the Lindley distribution in wait time analysis: Simulated and real data applications," Tuijin Jishu/Journal of Propulsion Technology, vol. 44, no. 2, 2023. DOI: https://doi.org/10.52783/tjjpt.v44.i2.174

S. A. Dar, A. Hassan, and P. B. Ahmad, "Poisson size-biased Lindley distribution and its applications," Int. J. Model. Simul. Sci. Comput., vol. 13, no. 4, p. 2250031, 2022. DOI: https://doi.org/10.1142/S1793962322500313

M. Abdi, A. Asgharzadeh, H. S. Bakouch, and Z. Alipour, "A new compound gamma and Lindley distribution with application to failure data," Austrian J. Stat., vol. 48, no. 3, pp. 54–75, 2019. DOI: https://doi.org/10.17713/ajs.v48i3.843

B. O. Oluyede, B. Mashabe, A. Fagbamigbe, B. Makubate, and D. Wanduku, "The exponentiated generalized power series: Family of distributions: Theory, properties and applications," Heliyon, vol. 6, no. 8, 2020. DOI: https://doi.org/10.1016/j.heliyon.2020.e04653

Downloads

Published

2024-12-30

Issue

Section

Mathematics

How to Cite

[1]
S. Othman, “Optimizing Poisson-Lindley Parameter Estimation: LQM and Reliability Analysis Applied to Guinea Pig Survival Data”, WJCMS, vol. 3, no. 4, pp. 83–95, Dec. 2024, doi: 10.31185/wjcms.261.