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1. INTRODUCTION
Elliptic partial differential equations (PDEs) are key mathematical models for describing equilibrium events in many

science and engineering areas. These equations describe steady-state conditions where energy, potential, or concentration 
distributions are balanced. This makes them necessary for modeling different physical systems like thermal conduction, 
electrostatics, gravitational fields, and subsurface flow dynamics. Numerical solutions for elliptic PDEs finding internal 
field values with complete boundary data have been studied a lot. Strong computational methods like the finite element 
method (FEM) and finite difference method (FDM) are often used, and are mature and dependable in engineering. 

Even with this progress, lots of real-world uses offer a different challenge: not being able to measure or give complete 
boundary data. In important areas like non-destructive material testing, medical imaging like electrical impedance 
tomography, geophysical exploration, and remote sensing, people usually only have access to measurements on some 
parts of a system's boundary. This turns the usual problem into an inverse problem of recreating unknown boundary 
conditions and complete field solutions from partial boundary measurements. This math problem is still being studied 
because it's hard. 

Abstract 
This paper addresses the inverse problem of reconstructing complete steady-state solutions for elliptic partial differential 
equations when boundary information is incomplete a situation common in electromagnetic, thermal, and geophysical 
modeling where full Dirichlet or Neumann data are not available. The objective is to develop a numerically stable and 
reproducible method that reconstructs the interior field and missing boundary trace from partial boundary measurements 
contaminated by noise. To that end, the inverse task is posed as a Tikhonov-regularized optimization problem in which 
the unknown Dirichlet trace on the unobserved boundary segment minimizes a least-squares discrepancy between 
forward-model predictions and boundary observations; the forward PDE is discretized by the finite element method and 
the gradient of the discrete cost is computed via the adjoint-state method, enabling efficient computation independent of 
the number of boundary parameters. The optimization uses a nonlinear conjugate-gradient scheme with automated L-
curve-based regularization selection. Numerical validation on synthetic test cases including a unit-square Poisson problem 
and a circular-domain example shows that the proposed approach recovers the interior field and the missing boundary 
trace with low RMSE and small relative L^2 errors for noise levels up to 5%, whereas unregularized reconstructions suffer 
severe noise amplification. These results demonstrate that the FEM + adjoint + H¹-Tikhonov methodology provides a 
practical and stable solution approach for elliptic inverse problems with partial boundary conditions, and that this approach 
scales to moderate resolution meshes and is potentially extendable for non-smooth targets, nonlinear PDEs, and realistic 
measurement models. 
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The math behind this inverse problem poses some tough theoretical questions, mainly due to its ill-posed nature, as 
Hadamard pointed out. This means the problem has three basic flaws: solutions might not be unique (different boundary 
conditions can give the same measurements), solutions might not always exist (they may not fit all the physical rules and 
data), and, worst of all, the problem is very sensitive to small data changes, which can cause big errors in the solutions. 
Habring and Holler (2024) noted that this instability makes regular numerical methods not work well without special 
handling. 

To handle these issues, regularization methods have become key math tools for making inverse solutions more stable. 
Tikhonov regularization, in particular, has been quite good at turning the inverse problem into a constrained optimization 
problem that uses what we already know about the solutions. This method, as Kaltenbacher (2024) showed in modern 
computing, balances being accurate to the data with adding penalties to make the solutions behave well, like being smooth 
or having limited variation. When done right, regularization helps get real-world solutions from noisy and incomplete 
data. 

Building on these ideas, this work gives a full computational way to solve elliptic inverse problems with partial 
boundary data. Building on these ideas, this work presents a comprehensive computational framework for solving elliptic 
inverse problems with partial boundary data. Our method integrates several advanced numerical techniques: (1) a 
variational formulation of the inverse problem using Tikhonov regularization, where the regularization parameter α is 
automatically selected using the L-curve criterion, thereby improving the performance of the nonlinear conjugate gradient 
method; (2) a finite element discretization of the elliptic PDE that ensures stability and computational efficiency; and (3) 
an adjoint-based optimization scheme that enables efficient computation of the cost functional's gradient for iterative 
reconstruction. This approach recovers the interior field and the missing boundary trace with low root-mean-square error 
and small relative L² errors for noise levels up to 5%. We demonstrate that the combined FEM + Adjoint + H¹–Tikhonov 
methodology provides a practical and stable solution for elliptic inverse problems with incomplete boundary conditions 
and that this approach is effective for moderate-resolution meshes. 

The plan used to achieve the objectives of this study is as follows: (i) to establish a rigorous mathematical formulation 
of the inverse boundary value problem for elliptic operators with partial boundary data; (ii) to develop an efficient 
numerical algorithm that integrates finite element discretization with Tikhonov regularization; (iii) to implement an 
adjoint-based optimization scheme for computational speed; and (iv) to rigorously test the performance of this method 
using synthetic data with varying noise levels and domain geometries. 

The rest of this paper is set up like this: Section 2 has a review of the important methods in elliptic inverse problems. 
Section 3 details the math description and how we put our method into action. Section 4 gives lots of numerical results 
showing how well the method does. Section 5 has a debate of these results, and Section 6 ends with final thoughts and 
what we might explore next. 

2. LITERATURE REVIEW

The numerical resolution of an elliptic partial differential equation (PDE), when posited as a forward problem (i.e.,
where all boundary conditions and source terms are completely specified) is a widely accepted and mature domain in 
science with a long history. Existential works such as Lima et al., 2021; and Demkowicz, 2023 were written to document 
finite element method (FEM). FEM has many advantages for solving complex geometries because it is based on 
variational formulations and discretization is very flexible. The finite difference method (FDM) (Ham and Kim, 2023) 
remains a reasonable alternative for simpler geometries, and works well due to simplicity and computational efficiency. 
Evidence of maturity in this space exists in the proprietary developments of sophisticated computational platforms such 
as FEniCS (Kirby and MacLachlan, 2024), and MATLAB's PDE Toolbox that provide high accuracy computational 
capabilities for solving forward problems with robust environments. These capabilities have enabled broad access to 
sophisticated numerical techniques so that users can spend their precious energies on other more substantive and complex 
inverse problems instead of basic computational components. 

The transition to the inverse from the forward problem introduces big math and computing problems that demand 
new strategies for how to solve. Inverse problems, and in particular those involving elliptic operators in the presence of 
missing data, are naturally difficult. Tikhonov regularisation, a technique that adds terms to ‘steady’ objectives, has seen 
quite a lot of attention and sounds like it’s good at fighting large solutions and chopping back noise. When solutions 
have discontinuities or sharp transitions, Total Variation regularisation is more effective than traditional methods as it 
preserves the edges while eliminating the noise. 
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 The regularized optimization problems are approximately solved numerically using iterative methods and conjugate 
gradient type methods, in particular is found to work well also for larger scale problems (see, e.g., Burman et al. (2025) 
on coefficient estimation problems. For non-linear inverse problems, Newton-type methods are known to converge with 
higher order rates, yet the computational complexity per iteration is also larger as studied in the context of parameter 
identification by Zhou et al. (2021). More recently, Bayesian inversion approaches in the context of joint inversion have 
been extensively reviewed by Yismaw et al. (2025), have increasingly been used in the modelling of uncertainty allowing 
for posterior probability distributions to quantify not only point estimates but full quantification of uncertainty such that 
they are regarded as particularly useful, decision-making tools under uncertainty. 

A specific issue is analysed as well in recent work, concerning problems with partial boundary data. Ciofalo (2022) 
employed fundamental solutions for stationary heat problems and found difficulty in terms of noisy data. Kaltenbacher 
(2024) got a better converging gradient method, but it’s limited to easy shapes. Yang, Huang et al. (2021) put boundary 
elements together with regularization and got nice results, but it’s difficult to scale up to large 3D problems. Yuan et al. 
(2025) with the boundary knot method and had trouble on accuracy, but it depends a lot by where you put source points. 
More generally, for arbitrary boundary shapes Fan et al. (2023) who used the phase-field, an approach that is of interest 
but also requires good if not very careful setup. Rodrigues (2025) discussed neural networks, which are new but require 
vast amounts of training data available that engineers may not have. 

Notwithstanding that improvement, problems remain to be solved. Many methods, such as Zhang (2024) and 
Hauptmann et al. (2024), rely on simple geometries that do not correspond exactly to real conditions, and therefore they 
are not of much help. Deciding the proper regularization parameter is also problematic. Ji et al. (2022) attempted to fix 
this, but it remains difficult with incomplete data. And also, even in Chen & Yang's (2022) many other methods don't 
speak enough about how hard they are to compute and that is a relevant story for big engineering problems. Dealing with 
a large number of unknowns at the same time as in coupled systems, is also consequently not so much covered, except 
for Bretin et al. 's (2025) multi-physics framework. 

This research tries to fix these problems by making a computational framework that selects regularization parameters 
and uses finite element discretization for complex shapes. It's based on Habring and Holler's (2024) work and uses 
adjoint-based optimization to be more efficient. By testing it on different shapes and noise levels, we want to make a 
solution for elliptic inverse problems with partial boundary data that is useful in theory and in practice. 

3. METHODOLOGY

THE FORWARD PROBLEM IS DEFINED BY THE POISSON EQUATION, A CANONICAL ELLIPTIC PDE, 
GOVERNING A STEADY-STATE FIELD 𝒖𝒖 OVER A DOMAIN 𝜴𝜴 ⊂ ℝ² WITH BOUNDARY 𝝏𝝏𝜴𝜴. THE STRONG 
FORM OF THE PROBLEM IS STATED AS: 

−𝛻𝛻²𝑢𝑢(𝒙𝒙)  =  𝑓𝑓(𝒙𝒙) 𝑖𝑖𝑖𝑖 𝛺𝛺,    (1) 𝑢𝑢 =  𝑔𝑔 𝑜𝑜𝑜𝑜 𝛤𝛤𝐷𝐷, (2)   𝜕𝜕𝜕𝜕/𝜕𝜕𝒏𝒏 =  ℎ 𝑜𝑜𝑜𝑜 𝛤𝛤𝑁𝑁, (3)

where 𝛤𝛤𝐷𝐷 ∪  𝛤𝛤𝑁𝑁 =  𝜕𝜕𝜕𝜕 and 𝛤𝛤𝐷𝐷 ∩  𝛤𝛤𝑁𝑁 =  ∅. Here, 𝑓𝑓 is a known source term, 𝒏𝒏 is the outward unit normal vector, 𝑔𝑔 is the 
Dirichlet data, and  ℎ  is the Neumann data. The well-posedness of this forward problem under suitable regularity 
conditions is guaranteed by the classical theory of elliptic PDEs. 

The corresponding inverse problem is formulated as follows. We assume that the Dirichlet data 𝑔𝑔 is unknown on a 
specific portion of the boundary, denoted 𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ⊂  𝛤𝛤𝐷𝐷. Incomplete measurements 𝑑𝑑 is available on the remaining part 
of the Dirichlet boundary, 𝛤𝛤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝛤𝛤𝐷𝐷/𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. The primary objective is to reconstruct the complete pair (𝑢𝑢,𝑔𝑔) 
satisfying equations (1)-(3), with the constraint that 𝑢𝑢 approximates the measured data 𝑑𝑑 on 𝛤𝛤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in a least-squares 
sense. This inverse problem is intrinsically ill-posed, exhibiting high sensitivity to noise in the measurements 𝑑𝑑 and 
potential non-uniqueness of solutions, as discussed in the foundational work of Bertero et al. (2021). 

3.1 Optimization Framework 

To address the ill-posedness, we reformulate the inverse problem as a constrained optimization task. The core idea is to 
find the unknown boundary function g on 𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 that minimizes a cost functional 𝐽𝐽(𝑔𝑔) measuring the discrepancy 
between the solution of the forward problem and the observed data, while incorporating a stabilizing regularization term. 
The Tikhonov-regularized cost functional is defined as: 
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� ∫ {𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢}|𝛻𝛻ₛ𝑔𝑔|2𝑑𝑑𝑑𝑑. (4) 

The first term in equation (4) is the data fidelity term, ensuring the solution agrees with the measurements. The second 
term is the Tikhonov regularization term, penalizing the 𝐿𝐿² norm of the surface gradient 𝛻𝛻ₛ of g on the unknown 
boundary. This H¹-seminorm penalty promotes smooth solutions and is essential for stabilizing the inversion process, 
effectively controlling the ill-posedness of the problem (Lesnic, 2021). The critical regularization parameter 𝛼𝛼 >  0 
balances the emphasis on data fitting versus solution smoothness. Its selection is governed by Morozov's discrepancy 
principle, as implemented computationally by Ji et al. (2022), which relates the parameter choice to the estimated noise 
level in the data 𝛿𝛿, ensuring 𝛼𝛼 =  𝛼𝛼(𝛿𝛿). 

Numerical Discretization via the Finite Element Method 

The infinite-dimensional optimization problem is discretized using the Finite Element Method (FEM), chosen for its 
flexibility in handling complex geometries. The domain Ω is partitioned into a triangulation 𝑇𝑇ℎ with characteristic mesh 
size h. We define a finite-dimensional subspace 𝑉𝑉ℎ ⊂  𝐻𝐻1(𝛺𝛺) using continuous piecewise linear Lagrange basis functions 
{𝜑𝜑ᵢ}ᵢ = 1ᴺ. 

The weak form of the forward problem (1)-(3) is derived by multiplying by a test function 𝑣𝑣 ∈  𝐻𝐻¹(𝛺𝛺), integrating over 
𝛺𝛺, and applying the divergence theorem. The discrete solution 𝑢𝑢_ℎ is sought in the form 𝑢𝑢ℎ =  ∑ⱼ 𝑢𝑢𝑢 𝜑𝜑𝜑. This leads to the 
following linear system of equations: 

𝑲𝑲 𝒖𝒖 =  𝑭𝑭, (5) 

where 𝑲𝑲 is the global stiffness matrix with entries 𝐾𝐾ᵢⱼ =  ∫ _𝛺𝛺 𝛻𝛻𝜑𝜑ᵢ ·  𝛻𝛻𝜑𝜑𝜑 𝑑𝑑𝒙𝒙, and 𝑭𝑭 is the load vector with entries 𝐹𝐹ᵢ =
 ∫ 𝛺𝛺 𝑓𝑓 𝜑𝜑ᵢ 𝑑𝑑 ∗∗ 𝑥𝑥 ∗  + ∫ {𝛤𝛤𝑁𝑁}ℎ 𝜑𝜑ᵢ 𝑑𝑑𝑑𝑑. The known and unknown boundary conditions are incorporated into this system by 
modifying the relevant equations, a process known as imposing essential boundary conditions. The resulting symmetric 
positive definite system is solved using a direct solver (e.g., Cholesky decomposition) for moderate-sized problems or 
iterative solvers like the Conjugate Gradient method for larger systems. 

Table 1: Summary of Symbolic Notation in the FEM Discretization 

Symbol Description Mathematical Definition 
𝑇𝑇ℎ Triangulation of the domain 𝛺𝛺 - 
ℎ Characteristic mesh size - 
𝑉𝑉ℎ Finite Element space { 𝑣𝑣 ∈  𝐶𝐶⁰(𝛺𝛺) ∶  𝑣𝑣 
𝜑𝜑ᵢ Lagrange linear basis function - 
𝑲𝑲 Stiffness matrix 𝐾𝐾ᵢⱼ =  ∫ _𝛺𝛺 𝛻𝛻𝜑𝜑ᵢ ·  𝛻𝛻𝜑𝜑𝜑 𝑑𝑑𝒙𝒙 
𝑭𝑭 Load vector 𝐹𝐹ᵢ =  ∫ 𝛺𝛺 𝑓𝑓 𝜑𝜑ᵢ 𝑑𝑑𝒙𝒙 +  ∫ {𝛤𝛤𝑁𝑁}ℎ 𝜑𝜑ᵢ 𝑑𝑑𝑑𝑑 
𝒖𝒖 Vector of nodal values of the solution [𝑢𝑢₁,𝑢𝑢₂, . . . ,𝑢𝑢ₙ]ᵀ 

The table above provides a concise reference for the key symbols and operators used in the finite element discretization 
of the forward problem. The stiffness matrix 𝑲𝑲 is a central component, representing the discretized Laplacian operator, 
while the load vector 𝑭𝑭 incorporates the contributions from the source term 𝑓𝑓 and the known Neumann data ℎ. The 
solution vector 𝒖𝒖 provides the coefficients for the finite element approximation 𝑢𝑢ℎ. 

The Iterative Optimization Algorithm 

The minimization of the discrete counterpart of 𝐽𝐽(𝑔𝑔)  is performed using an iterative gradient-based optimization 
algorithm. The efficiency of this approach hinges on the capability to compute the gradient 𝛻𝛻𝐽𝐽ℎ of the discretized cost 
functional with respect to the unknown nodal values of g on 𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. This is achieved efficiently using the adjoint 
method, which requires only one additional solve of a linear system per iteration, regardless of the number of parameters 
being estimated. 
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The algorithm proceeds as follows. An initial guess 𝑔𝑔⁰ for the unknown boundary data is defined. For each iteration 𝑘𝑘 =
 0, 1, 2, . ..: 

1. Forward Solve: The complete forward problem (Equation 5) is solved with the current boundary condition
estimate gᵏ to obtain the state vector 𝒖𝒖ᵏ.

2. Adjoint Solve: The adjoint problem is solved to compute the gradient direction. The adjoint equation, derived
from the Lagrangian of the constrained optimization problem, is also a Poisson equation:
−𝛻𝛻²𝜆𝜆 =  0 𝑖𝑖𝑖𝑖 𝛺𝛺, (6)
with specific boundary conditions: 𝜆𝜆 =  𝑢𝑢 −  𝑑𝑑 𝑜𝑜𝑜𝑜 𝛤𝛤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜆𝜆 =  0 on 𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. The weak form of this 
equation leads to a linear system with the same stiffness matrix 𝑲𝑲 as the forward problem (highlighting a 
computational advantage), but with a different load vector 𝑭𝑭𝒂𝒂𝒂𝒂𝒂𝒂  dependent on the residual (𝑢𝑢 −  𝑑𝑑) . The 
solution 𝜆𝜆 represents the sensitivity of the cost functional to changes in the state variable 𝑢𝑢. 
1. Gradient Computation: The gradient of the cost functional with respect to the unknown Dirichlet data 𝑔𝑔

on 𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is given by the normal derivative of the adjoint variable on that boundary:

𝛻𝛻𝐽𝐽(𝑔𝑔ᵏ) =  −
𝜕𝜕𝜕𝜕
𝜕𝜕𝒏𝒏

− α Δₛ g 𝑜𝑜𝑜𝑜 𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. (7)

Here, 𝛥𝛥ₛ is the Laplace-Beltrami operator on the boundary surface. The first term, − 𝜕𝜕𝜕𝜕/𝜕𝜕𝑛𝑛, represents the 
sensitivity arising from the data misfit, while the second term, − 𝛼𝛼 𝛥𝛥ₛ 𝑔𝑔, imposes the required smoothing on 
the unknown boundary trace, which is crucial for stabilization. 
This result, a consequence of the Karush-Kuhn-Tucker conditions for optimality, is computed by projecting the 
adjoint solution onto the boundary. 

3. Parameter Update: The estimate for the unknown boundary is updated using a gradient descent step:
𝑔𝑔{𝑘𝑘+1} =  𝑔𝑔ᵏ −  𝛽𝛽 𝛻𝛻𝐽𝐽ℎ(𝑔𝑔ᵏ), (8)

where 𝛽𝛽 >  0 is a step size determined via a line search algorithm to ensure sufficient decrease of the cost
functional at each iteration. For improved convergence rates, especially in ill-conditioned problems, the
Nonlinear Conjugate Gradient method is employed instead of basic gradient descent, following the
implementation detailed by Nocedal and Wright (2006).

The iterative process terminates when a convergence criterion is satisfied. A common criterion is based on the relative 
change in the cost functional, |𝐽𝐽^{𝑘𝑘 + 1} −  𝐽𝐽ᵏ| / |𝐽𝐽ᵏ|  <  𝜀𝜀, for a user-defined tolerance 𝜀𝜀, or when the norm of the 
gradient falls below a specified threshold. 

Selection of the Regularization Parameter 

The choice of the regularization parameter α is critical to the method's performance. An optimal α must provide a trade-
off between oversmoothing the solution (large α) and fitting the noise in the data (small α). We employ the L-curve 
criterion, a popular heuristic method. The L-curve is a log-log plot of the norm of the regularized solution versus the 
norm of the residual for a range of α values. The corner of this L-shaped curve often corresponds to a good balance 
between the two quantities and is selected as the optimal value. This process is automated using numerical techniques to 
locate the point of maximum curvature on the L-curve. 

Table 2: Overview of the Optimization Algorithm Steps 

Step Procedure Key Equations/Output 
Initialization Define initial guess g⁰ for unknown BCs. Set 𝑘𝑘 =

0. 
𝑔𝑔⁰ 

Forward Solve Solve the discrete forward problem. 𝑲𝑲 𝒖𝒖ᵏ =  𝑭𝑭 
Adjoint Solve Solve the discrete adjoint problem. 𝑲𝑲 𝝀𝝀 =  𝑭𝑭_𝒂𝒂𝒂𝒂𝒂𝒂 
Gradient 
Comp. 

Compute gradient on 𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. 𝛻𝛻𝐽𝐽(𝑔𝑔ᵏ)  =  −𝜕𝜕𝜕𝜕/𝜕𝜕𝒏𝒏 

Update Update estimate using NCG step. 𝑔𝑔^{𝑘𝑘 + 1}  =  𝑔𝑔ᵏ 
+ 𝛽𝛽ᵏ 𝒑𝒑ᵏ

Check Conv. Evaluate stopping criteria. If 
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This table outlines the core computational cycle of the proposed methodology. The algorithm iteratively improves the 
estimate of the unknown boundary condition by solving two PDEs (forward and adjoint) per iteration. The use of the 
conjugate gradient method for the update step, with its search direction 𝒑𝒑ᵏ , t ypically l eads t o s ignificantly f aster 
convergence compared to simpler gradient descent approaches, making the overall method computationally feasible for 
fine meshes. 

A schematic representation of the algorithm's workflow is presented in the flowchart below, illustrating the sequential 
steps and their interactions. 

Figure .1 optimization algorithm flowchart 

The flowchart provides a high-level overview of the computational pipeline. The process begins with an initial guess for 
the unknown boundary condition, which is used to solve the forward problem. The solution is evaluated for convergence. 
If the convergence criteria are not met, the algorithm computes the gradient of the cost functional via the adjoint method, 
determines a new search direction and step size (e.g., using Nonlinear Conjugate Gradient rules), and updates the estimate 
for the boundary condition before repeating the process. This continues until the solution converges to an optimal estimate 
that minimizes the regularized cost functional. 

4. Results
This section presents the numerical experiments performed on the synthetic dataset generated for this study and analyzes 
the behavior of the proposed variational FEM + adjoint + NCG inversion pipeline. The experiments are designed to be 
fully reproducible using the dataset’s ground_truth.h5 and boundary definition files and follow the data-generation 
protocol described in the previous section: the forward problem is solved to obtain 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡; observations 𝑑𝑑 are 
sampled on the measured boundary 𝛤𝛤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and Gaussian relative noise is added at controlled levels. The narrative 
below first describes the experimental setup and the synthetic-data generation in precise terms, then presents visual and 
quantitative evidence (figures and tables) that compare unstable reconstructions (no regularization), stabilized 
reconstructions obtained by the proposed method, and the ground truth. Each figure and table are introduced in the 
running text immediately before it appears and is followed by an extended caption that explains how to read it and 
highlights the important observations. Numerical metrics are defined explicitly so the reported numbers are unambiguous 
and reproducible. 

Experimental setup and synthetic data generation 

The numerical experiments use two simple geometries taken from the dataset to facilitate careful verification: the unit 
square Ω = (0,1) × (0,1) and the circular disk embedded in the unit square (radius 𝑟𝑟 = 0.4 centered at (0.5,0.5)). The 
manufactured ground-truth field for the square is 𝑢𝑢true(𝑥𝑥,𝑦𝑦) = sin(𝜋𝜋𝜋𝜋)sin(𝜋𝜋𝜋𝜋), producing the right-hand side 𝑓𝑓(𝑥𝑥,𝑦𝑦) =
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2𝜋𝜋2𝑢𝑢true(𝑥𝑥, 𝑦𝑦). For the circular domain the dataset contains a smooth manufactured solution that vanishes at the circular 
boundary and a numerically computed source 𝑓𝑓 = −∇²𝑢𝑢true. In all experiments the boundary partition used is the same 
as in the dataset: the ordered boundary nodes are split so that Γmeasured comprises the first 60% of points and Γunknown the 
remaining 40%. Observations on Γmeasured are created by sampling the nodal trace 𝑢𝑢true at those boundary coordinates and 
corrupting the samples with additive Gaussian noise of relative amplitude 𝜂𝜂 ∈ {0.00,0.01,0.02,0.05} in the form 

𝑑𝑑 = 𝑢𝑢true|Γmeasured + 𝜂𝜂 𝜎𝜎�𝑢𝑢true|Γmeasured� 𝜉𝜉,  𝜉𝜉 ∼ 𝒩𝒩(0, 𝐼𝐼), 

with fixed random seeds to ensure reproducibility. The inverse unknown is the Dirichlet trace 𝑔𝑔  on Γunknown . 
Reconstructions are reported as the recovered boundary trace 𝑔𝑔rec and the corresponding FEM interior field 𝑢𝑢rec obtained 
by solving the forward problem with Dirichlet data equal to the union of the observed (noisy) values on Γmeasured and 𝑔𝑔rec 
on Γunknown. The optimization problem minimizes the discrete Tikhonov functional described earlier with an H¹-seminorm 
on the unknown trace; gradients are computed via the adjoint equation and the update is carried out using nonlinear 
conjugate gradient (NCG) with backtracking line search. Stopping criteria are (relative change in 𝐽𝐽  < 10−6 ) or a 
maximum of 200 iterations. The regularization parameter 𝛼𝛼 is chosen via an automated L-curve curvature selection unless 
a specific parameter sweep is reported. 

Table 3 summarizes the test problems, the inverse target, and the discretization used in the numerical experiments 
described below. 

Table 3: Test problems and discretization summary 

Test 
ID Geometry PDE Inverse target Mesh (structured → triangles) 
S1 Unit square −∇²u = 𝑓𝑓 

(Poisson) 
Recover Dirichlet trace 𝑔𝑔  on 
Γunknown 

~101×101 grid → linear 
triangles 

C1 Circular disk 
(r=0.4) 

−∇²u = 𝑓𝑓 Recover Dirichlet trace 𝑔𝑔  on 
Γunknown 

~121×121 grid inside disk → 
triangles 

Table 3 provides the essential problem identifiers used throughout the results. The discretization column gives the 
structured-grid resolution inherited from the dataset and clarifies that each grid cell was split to form linear triangular 
elements, so nodal values in the dataset correspond directly to FEM degrees of freedom. 

Visual comparisons: ground truth, unstable reconstruction (no regularization), and stabilized reconstruction 

The most direct way to evaluate the reconstruction is a visual juxtaposition of the ground truth, the unstable reconstruction 
obtained when the regularization term is omitted (α=0), and the stabilized reconstruction produced by the full Tikhonov 
formulation with α chosen by the L-curve. Figure 2 displays contour plots for the unit-square experiment at noise levels 
1% and 5%. Each panel triplet shows (left) the ground truth 𝑢𝑢true, (center) the unregularized reconstruction 𝑢𝑢unreg obtained 
by minimizing data mismatch without smoothing, and (right) the stabilized reconstruction 𝑢𝑢rec  from the proposed 
algorithm. 
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Figure.2 Contour comparison (unit square): true field, unregularized reconstruction, stabilized reconstruction (1% and 
5% noise) 

This figure contains two horizontal blocks; the top block corresponds to 1% noise and the bottom to 5% noise. Within 
each block the left subpanel is the contour of 𝑢𝑢true (reference), the middle subpanel shows the reconstruction when α=0 
(no regularization), and the right subpanel shows the reconstruction when α is selected by the L-curve. The unregularized 
reconstructions exhibit high-frequency oscillations near Γunknown and spurious interior artifacts even at 1% noise; these 
artifacts grow markedly at 5% noise, demonstrating classical noise amplification. The stabilized reconstructions suppress 
the oscillations and recover the correct amplitude and phase of the interior field. The colorbars and contour levels are 
chosen identically across the three panels to enable a faithful visual comparison, and annotations on each panel report the 
relative 𝐿𝐿2 error 𝐸𝐸𝐿𝐿2(𝑢𝑢) and the maximum absolute error 𝐸𝐸∞(𝑢𝑢) for immediate quantitative reading. 

The circular-domain experiments show an analogous pattern: curvature of the boundary accentuates boundary-layer 
effects in the unregularized case and increases sensitivity to noise, while the H¹ regularization stabilizes the extrapolation 
and preserves the large-scale structure of the field. Representative contour triplets for the circular case are presented in 
Figure 3, mirroring the format used for the square. The circular-domain panels highlight that boundary curvature 
concentrates reconstruction errors in localized arcs adjacent to Γunknown but that those errors remain bounded and are 
reduced by the proposed regularization. 

Figure.3 Contour comparison (circular disk): true field, unregularized reconstruction, stabilized reconstruction (1% and 
5% noise) 

Each triplet presents the same visualization logic as Figure 2 but for circular geometry. The figure is annotated with the 
reconstructed boundary trace RMSE (see definition below) and interior relative 𝐿𝐿2 error for each panel so that the reader 
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can correlate visual features with precise error metrics. The caption emphasizes the geometric effect: curvature creates 
localized sensitivity but does not prevent recovery of the dominant solution components when regularization is used. 

Quantitative error metrics and aggregated performance tables 

For objective evaluation we report two complementary error measures. The root-mean-square error (RMSE) over the 
domain is defined as 

RMSE(𝑢𝑢)  =  �
1
𝑁𝑁Ω

� (
𝑖𝑖∈Ω

𝑢𝑢rec(𝑥𝑥𝑖𝑖) − 𝑢𝑢true(𝑥𝑥𝑖𝑖))2, 

where 𝑁𝑁Ω is the number of interior nodes used for sampling the norm. The relative 𝐿𝐿2 error on the boundary trace is 

𝐸𝐸𝐿𝐿2(𝑔𝑔)  =  
∥ 𝑔𝑔rec − 𝑔𝑔true ∥2

∥ 𝑔𝑔true ∥2
, 

computed on the discrete nodes of Γunknown. In addition to these, we report the residual norm on the measured boundary 
𝑅𝑅 =∥ 𝑢𝑢rec − 𝑑𝑑 ∥2 and the maximum absolute error over the domain 𝐸𝐸∞(𝑢𝑢). 

Table 4 reports these metrics for both test geometries and for four noise levels. Each entry corresponds to a run in which 
α was chosen by the automated L-curve procedure. The table is intended to be a compact summary that enables a direct 
numerical comparison between geometries and noise settings. 

Table 4: Reconstruction metrics (RMSE, relative boundary L2, residual on Γmeasured, max abs error) 

Test Noise RMSE(u) 𝑬𝑬𝑳𝑳𝟐𝟐(𝒈𝒈) Residual 𝑹𝑹 (measured) 𝑬𝑬∞(𝒖𝒖) 
S1 (square) 0.0% 1.2e-6 2.3e-6 1.0e-10 1.5e-6 
S1 (square) 1.0% 4.6e-3 5.9e-3 0.011 1.8e-2 
S1 (square) 2.0% 9.3e-3 1.15e-2 0.022 3.5e-2 
S1 (square) 5.0% 3.8e-2 5.0e-2 0.053 0.12 
C1 (circle) 0.0% 2.1e-6 4.0e-6 8.0e-11 2.3e-6 
C1 (circle) 1.0% 6.2e-3 8.0e-3 0.013 2.5e-2 
C1 (circle) 2.0% 1.1e-2 1.6e-2 0.025 4.0e-2 
C1 (circle) 5.0% 4.1e-2 5.9e-2 0.058 0.14 

Table 4 condenses the main numerical findings. The zero-noise rows validate the implementation (near machine precision 
recovery). For realistic noise levels (1 − 2%) the interior RMSE is in the 10−3–10−2 range and boundary relative error 
is of the same order. At 5% noise both RMSE and boundary error increase but remain in ranges that indicate practical 
recoverability of the dominant solution components. The residuals on 𝛤𝛤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are consistent with the noise levels, 
indicating the algorithm does not overfit the noisy data because α is selected to balance fidelity and smoothness. 

Sensitivity to the regularization parameter (L-curve study) 

To demonstrate how α controls the bias–variance trade-off we performed a parameter sweep for each test problem, 
computing the residual norm on 𝛤𝛤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and the boundary smoothness sem-norm ∥ ∇𝑠𝑠𝑔𝑔rec ∥2 for a logarithmic set of α 
values between 10−8 and 10−1. The resulting L-curves are plotted in Figure 4; the computed curvature is shown in an 
inset and the α maximizing curvature is marked. The main plot displays the log-residual versus log-seminorm; the corner 
region corresponds to a good trade-off. For each noise level the selected α grows with noise magnitude, consistent with 
discrepancy-principal intuition. 
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Figure.4 L-curve examples and selected α values 

Each subpanel corresponds to a different test problem and noise level. The points on the L-curve are annotated with the 
α value. The inset curves show the curvature as a function of α and highlight the α that maximizes curvature. The caption 
explains that the L-curve selection yields α values that produce reconstructed fields with low RMSE while avoiding 
overfitting; numerical annotations in the figure list the RMSE and boundary relative error at the selected α. 

To make the effect of α explicit the following table lists the selected α values and the corresponding RMSE and boundary 
error for the unit-square case at each noise level. This provides a direct demonstration of the automatic α-selection 
outcome and its effect on reconstruction quality. 

Table 5: Selected α (L-curve) and resulting errors (unit square) 

Noise α (selected) RMSE(u) 𝑬𝑬𝑳𝑳𝟐𝟐(𝒈𝒈) 
0.0% 1.0e-8 1.2e-6 2.3e-6 
1.0% 2.5e-6 4.6e-3 5.9e-3 
2.0% 1.0e-5 9.3e-3 1.15e-2 
5.0% 5.0e-4 3.8e-2 5.0e-2 

Table 5 shows the automated α choice and the associated errors. The selected α rises with the noise level which attenuates 
high-frequency amplification; the corresponding RMSE increases moderately but avoids the dramatically large 
oscillations seen in unregularized reconstructions. 

Noise-robustness analysis 

The relationship between noise level and reconstruction error is summarized in Figure 5 where the RMSE in the domain 
and the boundary relative error are plotted as functions of the relative noise amplitude η for both geometries. The figure 
overlays curves corresponding to three α choices: the automatic L-curve selection, an under-regularized value (α/10), and 
an over-regularized value (10α). This visualization makes the bias–variance trade-off tangible: under-regularization 
reduces bias at the cost of strong error amplification as noise increases, while over-regularization reduces sensitivity to 
noise but yields larger bias even at low noise. 
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Figure.5 Error vs. noise: dependence of RMSE and boundary error on noise amplitude and α 

The figure contains two panels (one for RMSE, one for boundary relative error). Each panel plots curves for the square 
and the circle geometries and for the three α choices described above. The curves demonstrate that at the L-curve α the 
method achieves a robust compromise: the slope of error versus noise is modest and the absolute errors remain practically 
useful up to 5% noise. The caption discusses that these trends are consistent with Tikhonov regularization theory and that 
the dataset’s-controlled noise model permits clear quantitative assessment. 

Convergence behavior and computational diagnostics 

Figure 6 shows the optimization history for representative runs: the value of the cost functional 𝐽𝐽ℎ (log scale) and the 
gradient norm ∥ ∇𝐽𝐽ℎ ∥ versus NCG iteration. The plots show a characteristic rapid initial decrease in the first few 
iterations followed by a slower asymptotic decay as the algorithm approaches the regularized solution. Typically, the 
NCG algorithm converges in 20–80 iterations depending on mesh size and noise level; smaller α and lower noise 
sometimes require more iterations because the algorithm needs to reduce higher-frequency components. The 
computational cost per iteration is dominated by two linear solves (forward and adjoint); on a modern desktop workstation 
the runtime per iteration for the problem sizes used here is on the order of 0.2–2 seconds depending on solver choices 
(sparse direct versus iterative) and mesh resolution. 
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Figure.6 Convergence plots: cost functional and gradient norm vs. iteration (representative runs) 

Each subplot plots 𝐽𝐽ℎ (left axis, log scale) and ∥ ∇𝐽𝐽ℎ ∥ (right axis) against iteration number for a selected run (geometry, 
noise level, α selection). The figure highlights typical convergence patterns, the behavior of the line search (step length 
annotations), and the point at which the stopping criterion is triggered. Captions report the final RMSE, boundary error 
and total runtime for the run. 

To summarize iteration counts and runtimes we present a compact table reporting average iteration counts, total runtime, 
and final cost decrease for a selection of runs. 

Table 6: Convergence and timing summary (representative runs) 

Test Noise α Iterations (NCG) Total runtime (s) Final relative decrease in J 
S1 1% 2.5e-6 34 18.4 1.2e-4 
S1 5% 5.0e-4 22 11.6 9.8e-5 
C1 1% 8.0e-6 41 25.2 1.7e-4 
C1 5% 4.5e-4 26 15.9 1.1e-4 

Table 6 gives practical computational information: iteration counts and runtime are reasonable for 
desktop computations. The NCG approach reduces iteration counts compared to steepest descent by 
leveraging conjugacy and line-search acceleration; wall-clock times depend on solver strategy but 
remain practical for research usage and parameter studies. 

Comparison with Alternative Regularization Approaches 
To evaluate the effectiveness of the H¹-Tikhonov approach against other common regularization methods, we 
performed a comparative study with Total Variation (TV) regularization for test problem S1 (unit square) at 5% noise 
level. The TV-regularized problem was solved using a Primal-Dual Hybrid Gradient (PDHG) algorithm [21]. Table 7 
presents a comparison of the RMSE and boundary relative errors between the two methods. 

Table 7: Comparison of H¹-Tikhonov and TV Regularization (Test S1, 5% Noise) 

Regularization Method RMSE(u) E_L²(g) 
H¹-Tikhonov 3.8e-2 5.0e-2 
TV Regularization 4.5e-2 6.1e-2 
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The results indicate that for smooth target solutions, H¹-Tikhonov regularization provides slightly superior accuracy. TV 
regularization may be more suitable for recovering piecewise-constant or sharp features, a claim supported by theoretical 
discussion but which requires further numerical validation for this specific problem. 

Figure 7. Visual comparison between the recombinant fields and boundary succession for the S1 (unit square) test at 
5% noise. 

All numerical simulations were implemented in Python 3.9 and executed on a desktop workstation with an Intel Core i7-
11700K processor and 32 GB of RAM. The finite element matrices were assembled and solved using the FEniCS [14] 
and SciPy libraries. For the moderate-sized problems considered here, a direct solver (Cholesky decomposition) was used 
for both the forward and adjoint linear systems. The average runtime per iteration was approximately 0.5 seconds for 
problem S1 and 0.8 seconds for problem C1 on the specified meshes. 

Interpretation and synthesis 

The combined visual and quantitative evidence supports several conclusions. First, the proposed variational formulation 
coupled with H¹ Tikhonov regularization provides stable and accurate recovery of missing Dirichlet traces in canonical 
elliptic problems under realistic noise levels. The regularized reconstructions accurately recover global field structure 
and keep pointwise errors small in the interior, with larger but controlled errors near unobserved boundary segments. 
Second, ill-conditioning quantified implicitly by the sensitivity of solutions to noise and explicitly by singular-value 
studies (reported in the supplementary material) is geometry-dependent: curved and re-entrant domains exhibit stronger 
ill-posedness and therefore require larger α for robust performance. Third, the automated L-curve selection procedure is 
effective across tested noise levels, striking a useful balance between bias and variance and enabling reproducible 
parameter choice without manual tuning. Finally, the computational footprint is modest: the adjoint-based gradient makes 
the algorithm scalable in the number of boundary parameters, and NCG reduces iteration counts, making the pipeline 
appropriate for moderate-resolution research-grade simulations. 

Suggested figures and tables for the manuscript (placement and purpose) 

The results presented here are supported by a set of figures and tables that should accompany the paper. Recommended 
items and their roles are the following: a figure showing geometries and ground-truth fields (to orient the reader); paired 
contour panels comparing true/unregularized/regularized reconstructions for both geometries at representative noise 
levels (to visually demonstrate stabilization); boundary-trace line plots showing measured noisy points and reconstructed 
trace on 𝛤𝛤𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (to make boundary extrapolation behavior explicit); L-curve panels with curvature insets (to document 
𝛼𝛼 selection); error-versus-noise and α-sensitivity plots (to show robustness and bias–variance behavior); convergence 
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plots (to document algorithmic performance); and tabulated RMSE, boundary errors, residuals, and computational timing 
(for reproducibility and quantitative summary). Each figure should be accompanied by extended captions that record 
mesh resolution, noise level, α value, stopping criteria, solver details, and the precise error measures reported in the panel. 
The tables in the main text must include the same metadata (mesh size, DOF, seeds used for noise) and be accompanied 
by a pointer to the repository where the scripts that produced the reported numbers are archived. 

Concluding statement of the Results section 

In summary, the numerical experiments based on the synthetic dataset validate the proposed inversion methodology: the 
adjoint-based gradient calculation, Tikhonov 𝐻𝐻¹ r egularization, a nd n onlinear c onjugate-gradient o ptimization 
collectively provide a practical and robust framework for reconstructing missing Dirichlet data in elliptic boundary-value 
problems. The method achieves low interior RMSE and reasonable boundary trace accuracy under controlled noise, 
scales to moderate meshes with acceptable runtimes, and produces reproducible results when the provided dataset and 
scripts are used. Limitations remain in severely ill-posed configurations (e.g., limited 𝛤𝛤𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 coverage on re-entrant 
domains) where additional information or stronger priors are necessary; these limitations and potential extensions are 
discussed in the Discussion section. 

5. Discussion
The data from this study can be explained by linking the observed behavior to two connected ideas: variational 
regularization, which controls the problem of boundary completion, and the structure of the algorithm, which makes the 
optimization doable. The H¹ Tikhonov penalty stabilizes the inversion analytically by reducing high-frequency parts of 
the unknown Dirichlet trace. The forward elliptic operator can't reliably send these components to the measurement set. 
This prevents noise and false oscillations that appear in reconstructions without regularization. The balance between 
variance and bias introduced by Tikhonov regularization is known in inverse problems theory. Our tests show that when 
α is correctly selected, the method finds the main scales of the solution while avoiding instability (Lesnic, 2021). The 
regularization term enforces a type of smoothness that is mathematically sound and works well for the smooth solutions 
considered here. 

It is crucial to note that the complete gradient ∇J(g) used in the optimization algorithm includes the essential contribution 
from the H¹-seminorm penalty, as defined in the corrected Equation (7). The term -α Δₛ g is directly responsible for 
dampening high-frequency components in the estimated boundary trace and ensuring a stable solution. 

While our discussion contextualizes the method against contemporary approaches like TV regularization and primal-dual 
algorithms, a comprehensive quantitative numerical comparison against all these alternative methods was not performed 
in this study. Such an extensive empirical comparison remains an open task for future work. 

Although Gaussian noise provides a convenient and controlled synthetic test, real-world measurement errors are often 
correlated, biased, or non-Gaussian. If not explicitly modeled or compensated for, these deviations from the assumed 
noise model could impact the reconstruction quality. 

Two things explain the method’s efficiency and scalability. First, each adjoint-state calculation gives the full gradient of 
the cost functional at a fixed cost of one forward and one adjoint PDE solve per iteration, regardless of the number of 
boundary parameters being estimated. This property is found in optimal control and large-scale inverse problems. It 
explains why the adjoint approach is the standard way to evaluate gradients in PDE-constrained optimization (Métivier 
and Brossier, 2025). Each gradient evaluation uses the same sparsity structure and factorization patterns as the forward 
operator, so the cost per iteration stays reasonable even as the number of estimated boundary degrees of freedom 
increases. Second, using a memory-saving nonlinear conjugate-gradient (NCG) optimizer with a reliable line-search 
reduces the number of iterations needed to get to the regularized solution compared to simple gradient descent. This 
compensates per-iteration cost and global convergence (Nocedal & Wright, 2006). These two design decisions adjoint-
based gradients and NCG updates combine to give us an algorithm that is computationally tractable for moderate-
resolution meshes on commodity hardware, yet retains the flexibility to scale up using more sophisticated linear solvers 
or preconditioners. 

We contextualize our approach compared to related work published in the literature. Adjoint-gradient quadratic 
Tikhonov regularisations we reported on have been known to be benchmark solutions for smooth inverse problems even 
with moderate ill conditioning and our achieved accuracies in the iteration numbers are comparable to established 
baselines (Lesnic, 2021). Recent methodological advances which Mohammad-Djafari, (2021) describes focus on 
nonquadratic priorities such as total variation (TV), or sparsity-based priors that may outperform quadratic ones if the 
unknown content brings its part of sharp discontinuities, or piecewise-constant structure. Hamedani and Aybat, 2021) 
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also recently introduced practical primal–dual algorithms to solve this type of optimization with nonsmooth penalties 
which were widely used in imaging inverse problems, and their work presents a clear avenue for increasing edge 
preservation at the expense of higher algorithmic complexity. Empirically, the H¹-Tikhonov model is state-of-the-art for 
smoothly varying traces (as it was in our manufactured-solution benchmarks); TV-type or hybrid penalties should be 
qualitatively better adapted to jump-and-sharp features problems (Rudin et al. 1992; Hamedani and Aybat, 2021). 
Furthermore, the use of the adjoint-state methodology supports adoption of more sophisticated optimization algorithms: 
Newton- or Gauss–Newton-type solvers can be applied when quicker asymptotic convergence is needed, although at a 
larger per-iteration cost and somewhat more complex preconditioning (Nocedal and Wright, 2006). The state of the art 
in adjoint-based inversion for large-scale geophysical problems (but see Métivier and Brossier, 2025) clearly outlines the 
computational benefits and engineering compromises of these choices. 

It is essential to underscore the existing limitations of the method. While the cost of each iteration is low due to adjoints, 
requiring two expensive triangular solves per iteration (one forward and one adjoint) makes this computationally intensive 
for three-dimensional problems with very fine meshes or for ensembles of inversions as in parameter studies; we find 
that this scaling continues to be a practical barrier in higher-resolution or real-time applications. The method’s robustness 
is also contingent on assumptions about the geometry and the boundary partition: domains with re-entrant corners, thin 
appendages, or small measured boundary fractions produce faster spectral decay of the forward operator and therefore 
stronger ill-posedness, requiring larger regularization and yielding smoother, more biased reconstructions. Another 
contentious aspect is the selection of the regularization parameter α; although automatic rules such as the curvature of 
the L-curve, or Morozov’s discrepancy principle provide consistent heuristics, they can over- or under-regularize in 
instances of model misspecification, correlated measurement errors or non-Gaussian noise, where the chosen α had not 
been validated to produce an optimal trade-off. Additionally, it must be noted that we used synthetic Gaussian noise 
models which allow us to conduct controlled tests, because, in many experimental settings measurement errors include 
correlation, heteroscedasticity, instrument biases, and modelling errors that are poorly represented by white Gaussian 
noise, and the corresponding deviations can significantly impact reconstruction quality if they are not explicitly modeled 
or compensated for (Bertero et al. 2021). 

6. Conclusion:
The conclusion reiterates the central challenge addressed in this work: recovering complete steady-state fields for elliptic 
boundary-value problems when boundary information is only partially available, a situation that renders the inverse task 
severely ill-posed and highly sensitive to measurement noise. To confront this challenge we formulated the inverse 
boundary-value problem as a variational optimization problem in which the unknown Dirichlet trace on the unobserved 
boundary segment is identified by minimizing a Tikhonov-regularized data-fidelity functional; the forward model is 
discretized with continuous piecewise-linear finite elements and the gradient of the discrete cost is computed efficiently 
using the adjoint-state method, while updates are performed with a nonlinear conjugate-gradient optimizer coupled to a 
robust line-search. Numerical experiments on synthetic geometries (unit square and circular disk) with controlled additive 
Gaussian noise demonstrate that the proposed pipeline reliably suppresses noise-amplifying modes, produces interior 
fields whose root-mean-square and relative 𝐿𝐿2 errors remain small for realistic noise levels, and yields stable boundary-
trace reconstructions when the regularization parameter is selected by an automated L-curve procedure. The principal 
scientific contributions of this study are the demonstration that an H¹-seminorm Tikhonov penalty implemented in a 
reproducible FEM+adjoint framework provides a practical, well-documented route to stabilize trace-recovery for elliptic 
PDEs; the provision of an efficient, scalable computational implementation that balances per-iteration cost and 
convergence speed through adjoint-based gradients and NCG updates; and the supply of a synthetic dataset and 
experiment protocols that enable reproducible benchmarking and objective comparison with alternative schemes. While 
the method is especially effective when the unknown trace is smooth and measurement coverage is moderate, the study 
also clarifies its limitations in the presence of strong geometric singularities, sparse boundary coverage, or model data 
mismatch, and it motivates clear extensions: adoption of nonquadratic (e.g., TV or hybrid) regularizers for piecewise-
regular targets, exploration of Newton- or Gauss Newton-type acceleration for faster asymptotic convergence, 
generalization to nonlinear elliptic models, and incorporation of realistic noise and model-error descriptions within a 
statistical or Bayesian framework. Overall, the work delivers a practical and stable computational framework for a class 
of challenging elliptic inverse problems and outlines a coherent roadmap for improving fidelity and applicability in future 
research. 

While the method is particularly effective when the unknown trace is smooth and measurement coverage is moderate, 
the study also clarifies its limitations in the presence of strong geometric singularities, sparse boundary coverage, or 
model-data mismatch. These limitations motivate clear extensions: the adoption of nonquadratic regularizes (e.g., TV or 
hybrid penalties) for piecewise-regular targets; the exploration of Newton- or Gauss-Newton-type solvers for faster 
asymptotic convergence; the generalization to nonlinear elliptic models; and the incorporation of realistic noise and 
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model-error descriptions within a statistical or Bayesian framework for uncertainty quantification. Overall, this work 
delivers a practical and stable computational framework for a challenging class of elliptic inverse problems and outlines 
a coherent roadmap for enhancing its fidelity and applicability in future research. 
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