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1. INTRODUCTION
Machine learning models are currently employed in various sectors finance, health, education, hiring [1] where decisions 
directly impact individuals. In recent years, a growing body of research has highlighted how algorithmic decision-making 
can reproduce or amplify existing social inequalities, particularly in credit scoring, medical diagnosis, and recruitment 
[2], [3]. Such systems are based on structured data often associated with historical or social bias [2]. Scholars have 
observed that even when models achieve high predictive accuracy, disparities in false positive or false negative rates 
across demographic groups can still persist [4]. Although machine learning models may outperform competing methods, 
they may also be relatively more biased towards certain features [3]. The tension of performance compared to fairness 
represents a critical limitation on the horizon for AI systems [4]. Fairness is increasingly become a fundamental 
dimension of responsible AI, prompting the use of tactics like algorithmic audits, establishing benchmark values in bias, 
and standardized fairness metrics like demographic parity and equal opportunity. The feature selection process is a 
necessary component of reducing complexity and increasing interpretability [5]. Feature selection removes irrelevant 
characteristics towards model generalization and provides clarity on pathways to decisions. In recent literature, fairness-
aware feature selection has gained attention as an upstream intervention that can mitigate discrimination before training 
begins [6], [7]. However, traditional feature selection criteria generally are based on correlation or information gain in 
relation to the target variable [6]. Ethical concerns regarding fairness or indirect discrimination through correlated 
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features are seldom acknowledged [7]. A feature may be statistically viable, but socially harmful as a proxy of a sensitive 
characteristic, such as gender, or ethnicity [8]. For example, location or job title can inadvertently encode gender or race 
information that leads to biased outcomes in hiring datasets.  Fairness-aware learning attempts to address these concerns 
[9]. Several studies have analyzed bias correction after the training phase of the model, such as by reweighing, 
resampling, or adversarial debiasing [10]. These methods have proven effective in adjusting outcome distributions, but 
often degrade model interpretability or utility [11]. Nevertheless, post correction methods are limited in that it simply 
addresses the symptoms, opposed to the cause [11]. There are not many papers that have sought to integrate fairness and 
fairness criteria directly into the feature evaluation process itself [12]. By incorporating fairness metrics at this early 
stage, it could prevent biased features from being included in the model and ultimately save time and cost for de-biasing 
later [13]. Mutual Information is one popular criterion used for feature ranking and quantifies dependency between input 
variables and the target [10]. Since Mutual Information is non-parametric and model-independent, it would work well for 
mixed data like healthcare records [2]. Recent studies confirm that coupling Mutual Information with fairness metrics 
improves transparency and decision accountability, particularly in sensitive domains such as HR analytics and patient 
triage. The goal would be to produce subsets of features that are informative and socially just by applying a fairness 
criterion such equal opportunity difference [12], [14]. 
Consequently, this study suggests the adaptation of equal opportunity differentials to assess fairness at the feature 
selection stage via Mutual Information and implements it on the IBM HR Analytics dataset due to the social significance 
of the employee attrition prediction task. To compare fairness and accuracy of predictions, we included six classifiers in 
our analysis: fair logistic regression, interpretable boosting machines, XGBoost, random forest, SVM, and KNN to 
compare variation in overall classification accuracy and bias. 
 
2.  RELATED WORK  
Research into the prediction of employee attrition has transitioned through methodologies from traditional statistics to 
machine learning frameworks with emphasis on advanced machine learning architectures. The IBM HR Analytics dataset 
is one extensively utilized dataset in the literature. Most early studies on attrition aimed to only improve predictive 
accuracy and did not explore ethics or interpretability. In [15] the authors employ Decision Tree, AdaBoost, Random 
Forest, and Gradient Boosting, and it was shown that Random Forest achieved the best accuracy, but only the numerical 
performance was analyzed. In [16], Decision Tree, Random Forest, and Logistic Regression were the classifying 
algorithms compared with each achieving an accuracy of 87.4% with Logistic Regression performing best. The authors 
showed that a simple linear model can succeed on structured HR data set, however, do no ethics analysis whatsoever. In 
[17], the author investigates Random Forest, and Logistic Regression classifying algorithms after pre-processing the data 
using a SMOTE (Synthetic Minority Oversampling Technique) balancing technique. The model achieved an accuracy of 
85.7% using Random Forest; again, no fairness or potential bias/discrimination analysis for the selected features was 
discussed or considered. 
Later studies looked into maximizing model efficiency and feature importance. In [18], both Gradient Boosting and 
Logistic Regression were explored to classify employees as high-risk. The modsles was more accurate, with no 
consideration for fairness or transparency. The comparative study in [19] was conducted with nine classifiers, result 
demonstrating that Logistic Regression and Random Forest were better than others in performance indicators, including 
accuracy and AUC. In [20] proposed use feature selection methods, such as Information Gain and Recursive Feature 
Elimination, which showed that a proper ranking of input information improved classification metrics. However, the 
methodology does not inquire if these dominant features have enacted hidden biases or vicious impacts towards equitable 
decision making. An ensemble learning framework like the one in [21], improved performance measures by an additional 
second-layer, but it did not address fairness concerns, nor did the experiment in [22], which analyzed various algorithms, 
such as Naïve Bayes and Neural networks, while also utilizing a Voting Ensemble; Logistic Regression appeared as a 
data mining method that conducive the a balance of a more accurate and interpretable model, but it also lacked a 
systematic assessment of bias. 
feature selection methods is commonly employed in feature selection because it quantifies the relationship between 
features and the target variable. However, standard feature selection methods approaches have not considered fairness and 
are only concerned with statistical relevance. Although it is uncommon, incorporating fairness-based metrics such as 
Equal Opportunity Difference (EOD) with MIs for selection has been done in other domains, particularly in HR analytics. 
 
3. FAIRNESS-AWARE FEATURE SELECTION 
3.1 CONCEPT OF FEATURE SELECTION 
Feature selection can be understood as a process to identify the most relevant, non-redundant, data informative attributes 
from a data set to improve the efficiency and reliability of a machine learning model by improving its predictive 
performance, reducing its computational complexity, and increasing interpretability of a model [23]. Feature selection 
minimizes noise and variance in the data by removing irrelevant or highly correlated variables to avoid overfitting and to 
improve the model's ability to generalize on unobserved samples while maintaining or even improving numerical stability 
and reduced training time, especially in high-dimensional data sets [24]. At this level of description, feature selection is 
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one of several dimensionality reduction techniques that preserve the inherent structure of the data while discarding 
unnecessary information [25]. In traditional statistical theories, the optimal set of features is defined in terms joint mutual 
dependency, maximizing the mutual dependency between the selected features and the target variable while minimizing 
redundancy of dependent features [26]. This idea is the basis of several classical criteria such as Information Gain, Chi-
square test, Fisher Score, and Mutual Information (MI) [27]. Figure 1 illustrates the basic processes for selected features. 

    
 

FIGURE 1. General Process of Feature Selection 
 
3.2 TRADITIONAL FEATURE SELECTION METHODS 
Common types of feature selection are filter, wrapper, and embedded methods.  

Filter methods: These methods evaluate each feature based on its statistical relevance to the target variable, regardless of 
the classifier used. Popular statistics on filter methods include Information Gain (IG), Chi-Squared, and Mutual 
Information (MI). Filter methods are generally fast, but do not consider feature interactions [27].  
Wrapper methods: These apply machine learning algorithms to evaluate differences between feature subsets using an 
iterative process of selection and testing, such as Recursive Feature Elimination (RFE). Wrapper methods often lead to 
slightly higher accuracy in evaluations, but can be quite time-consuming [28].  
Embedded methods: In embedded methods, feature selection takes place while models are being trained as in the case of 
LASSO, Decision Trees, and Random Forests where less important features are penalized or pruned naturally. Figure 2 
shows the types and methods of feature selection [28][29]. 

    

FIGURE 2. Feature Selection Methods 
 
3.3 MUTUAL INFORMATION-BASED SELECTION 
Mutual Information (MI) is a non-parametric statistical measure that assesses the amount of shared information between 
two variables [28][29]. MI quantifies the amount of uncertainty reduced in knowing the value of one variable given the 
other variable, which accounts for both linear and nonlinear dependencies in the data. In comparison to correlation 
coefficients, which solely capture linear dependencies, MI can find more complex interaction of features with the target 
variable; in this regard, MI works well in heterogeneous datasets where variables are multi-level categorical and 
numerical. Nevertheless, traditional MI selection considers only statistical relevance, but not the ethical or fairness 
implications of the selected variables. A variable can show a much higher dependency with the target variable and still be 
a proxy for sensitive information, like gender, marital status, or age 
. 
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Fairness aware-feature selection enhances traditional selection frameworks by incorporating constraints that penalizes for 
features that lead to biased or inequitable prediction results [30]. The main purpose is to select features that have 
predictive relevance, while not creating disparity in their treatment of groups defined by sensitive variables (e.g., gender, 
marriage status, and race/ethnicity) [28]. In this way, fairness is treated as a constraint in the optimization process, rather 
than as a tuning adjustment post-prediction. Measures such as Equal Opportunity Difference (EOD) are utilized balance 
fairness and prediction outcomes. EOD is the difference in True Positive Rates (TPR) between privileged (i.e., socially 
advantageous to relevant outcome) and unprivileged (i.e., socially disadvantageous to relevant outcome) groups, where 
smaller values would indicate that a model performs similarly across demographically defined groups [29]. Thus, by 
integrating EOD, for instance, into the feature selection and evaluation assessment, we can eliminate the features that 
create bias in prediction before the model is trained, and therefore implement proactive ways to address discrimination at 
the root of these biases — data representation and the feature variable assessment phase — instead of afterwards when 
prediction has been made. 
 
4.  METHODOLOGY 
       Traditional feature selection aims to identify and retain the most relevant variables in a dataset to enhance model 
accuracy, reduce complexity, and prevent overfitting. However, conventional methods typically neglect ethical issues 
such as fairness and possibly biased features, especially for applications that have social sensitivity, such as human 
resources. 
The aim of this research is to confirm that features chosen for predictive performance also advance algorithmic fairness 
while preserving the interpretability of the model itself. 
 
4.1   FAIR AND INTERPRETABLE FEATURE SELECTION 
        Fair and interpretable feature selection involves identifying features that are both predictive as well as ethically 
justifiable and interpretable. This procedure includes fairness constraints to address biases related to sensitive attributes, 
yet aims for parsimony and increased interpretability. The interpretability constraint in feature selection can be discussed 
in terms of the Markov Blanket (MB) notion [31]. As established in the theory of Bayesian networks, a target variable 𝑌𝑌 
has a Markov Blanket (MB) consisting of the smallest number of features necessary to make 𝑌𝑌 conditionally independent 
of all other features in the dataset. This relationship can be formally stated as follows: 

S ⊆ 𝑀𝑀𝑀𝑀(𝑌𝑌)                                           (1) 
where: 

𝑆𝑆 is the subset of features selected for the model, 
𝑌𝑌 is the target variable, and 
𝑀𝑀𝑀𝑀(𝑌𝑌) denotes the Markov Blanket of Y. 

This concept implies that knowing MB(Y), any other features don't matter for predicting Y. So, the selection S ⊆ MB 
means that the model only depends on the informative, non-redundant variables, and it makes the model easier to 
interpret and more efficient. In this paper, this theory serves as a basis for merging Mutual Information (MI) and fairness 
criteria where MI is used to identify the variables that are most related to Y, and the fairness term to enforce their ethical 
neutrality. 
To guarantee that the selected subset of features does not encode or transmit information about sensitive variables, a 
fairness constraint is imposed during the feature selection stage. The fairness constraint ensures that each selected feature 
𝑓𝑓𝑓𝑓 ∈  𝑆𝑆 is conditionally independent of sensitive attribute A given 𝑀𝑀𝑀𝑀(𝐴𝐴): 

∀𝑓𝑓𝑓𝑓 ∈  𝑆𝑆:    𝑓𝑓𝑓𝑓 ⫫  𝐴𝐴 ∣ 𝑀𝑀𝑀𝑀(𝐴𝐴)               (2) 
Where: 

fi is the feature in dataset. 
∀ fi ∈ S means “for every feature fi in the set S. 
A is a sensitive attribute 

To assess the extent of fairness realized by the predictive model, this study uses the Equal Opportunity Difference (EOD) 
metric to quantify the difference in true positive rates across protected and unprotected groups. The EOD specifically 
assesses whether candidates across demographic groups that are similarly qualified (e.g., positive in the ground truth) 
have the same probability of being predicted as positive. Formally, the EOD is defined as: 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏        (3) 
where: 

   𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                     (4) 
Is the True Positive Rate (recall) for the privileged group a, and 

   𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

                    (5) 
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Is the True Positive Rate for the unprivileged group b. 

A lower absolute value of EOD implies the model predicts similarly across demographic groups, while higher values 
suggest influencer bias towards one group. In this study, EOD is included in the Fairness-Aware Mutual Information 
(FAMI) as a fairness penalty term and to benchmark predictive performance between probability, after predicting equal 
substantiated discrimination.  

4.2.   MUTUAL INFORMATION 
        Mutual Information (MI) measures how much information one variable gives you about another variable. In feature 
selection, MI measures how dependent each feature is on the target variable [12]. The higher the MI score, the higher the 
predictive ability. The formal definition of mutual information between two variables X and Y is: 

𝐼𝐼(𝑋𝑋;𝑌𝑌) = ∑𝑥𝑥∈𝑋𝑋 ∑𝑦𝑦∈𝑌𝑌𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)

�      (6) 
Where: 
p(x,y) is the joint probability distribution of X and Y 
p(x) and p(y) are the marginal distributions of X and Y, respectively. 
 
Features are ranked by MI, and the top-ranked features are selected for further fairness evaluation 
 
Mutual Information Pseudo code: 
Input:  
     Dataset D with features X = {x1, x2, ..., xn} and output variable Y 
     Number of the top feature to select: k 
Output:  
     Selected features subset S (size k) 
Procedure: 
1. Initialize an blank list MI_scores =  [ ] 
2. For every feature xi in X: 
     Compute mutual information score MI (xi, Y) 
3. Sort MI_scores in descending order  
4. Select the top k features: 
       S = top k features from MI_scores 
5. Return S 

4.3. PROPOSED FRAMEWORK 
To ensure fairness and interpretability, we developed a framework for embedding fairness constraints, particularly the 
Equal Opportunity Difference (EOD) metric into the feature selection process as opposed before model training. The 
framework combines fairness starting from the phase of feature evaluation, instead of imposing fairness after the learning 
algorithm has occured. The framework captures the overall process of embedding fairness into the feature selection and 
classification process as illustrated in the Figure 3. The goal being to ensure that the resultant ameliorated machine 
learning models are equitable with respect to sensitive attributes- as well as accurate. 
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Figure1  depicts the method of the proposed Fairness-Aware Mutual Information (FAMI) framework for predicting 
employee attrition. We begin the workflow with data preprocessing, where we deal with missing values, encode 
categorical variables, and specifically identify sensitive attributes (e.g., gender, marital status) to evaluate fairness. Next, 
we compute Mutual Information (MI), where each feature's dependency with respect to the target variable is computed. 
MI estimates how much information features can provide to predict the target, and we start the selection process with 
features that are presumably informative. In the end, the Feature Ranking Module provides a descending order of features 
based on MI scores, indicating which features contribute most to predicting employee attrition. The ranked features are 
evaluated as per iteration against the Fairness Constraint which measures bias between demographics groups using the 
Equal Opportunity Difference (EOD) metric. All subsets that do not meet EOD ≤ 0.05 are not passed to the next step. The 
feature selection module considers relevance and fairness and yields a final subset with an optimal trade-off between 
predictive accuracy, and fairness. This final subset is used to train the models in the Model Training and Evaluation stage 
through classification with multiple classifiers: Logistic Regression, Random Forest, XGBoost, SVM, KNN, and 
Explainable Boosting Machine (EBM). Finally, the evaluation assesses performance (accuracy, precision, recall, F1 
score), and fairness metrics (EOD) to evaluate the model. 

4.4   CLASSIFICATION MODELS USED 
The machine learning algorithms were used to measure the effectiveness feature subset derived from the Fairness-Aware 
Mutual Information (FAMI) methodology. 

     Check 
    fairness 

threshold? 
(EOD ≤ 0.05) 

 

Compute Mutual Information (MI) between each feature target 
  

Rank Features based on MI scores 
  

Iterative Feature Subset Selection: 
• Train preliminary model 
•  Evaluate fairness (EOD) 

  

  Select final features subset  
 

Penalize/Reject 
 subset  

  

Check performance criteria 
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Train Models (Fair Logistic Regression, EBM, XGBoost, Random Forest, SVM and KNN) 
 

        Model evaluation  

No
   

Yes 

           FIGURE 3. Framework of Proposed Methodology  
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XGBoost (Extreme Gradient Boosting) is a superset of Gradient Boosted Decision Trees that uses regularization and 
multiple base learners to increase accuracy and avoid over fitting [32]. As an ensemble learning method, it combines 
several weak learners (shallow trees) together sequentially to produce a strong predictive model. XGBoost is especially 
relevant for tabular structures (e.g. HR datasets) which have non-linearity and interaction in data distributions [33]. 
Support Vector Machine (SVM) is a supervised learning algorithm that finds the best hyperplane to separate classes and 
maximize the margin [34]. SVM can then use kernel functions (e.g. radial basis function) to model linear and nonlinear 
relationships between features and the target variable. Furthermore, SVM can model data structure on moderate sized 
datasets while not over fitting [35]. 
K-Nearest Neighbors (KNN) is a non-parametric classification method which labels a sample according to the class that 
has the most prevalent label among its k nearest neighbors in the feature space [36]. KNN also relies on a distance 
metric (e.g. Euclidean distance) and it can be sensitive to features scale and noise. Despite its simplicity, KNN can 
perform comparably well when the data is normalized and structured [37]. 
A Random Forest (RF) model is an ensemble model made up of multiple decision trees that are trained on subsamples 
of the data chosen from a bootstrapping methodology, as well as randomly sampled features [38]. The aggregate 
prediction made by the RF is created through aggregating all of the tree predictions (like a majority vote). The ensemble 
nature of RF helps to improve generalization and decrease variance, and it works especially well for mixed HR 
attributes [39]. 
The Explainable Boosting Machine (EBM) is built upon the basic principles of Generalized Additive Models to create 
an interpretable ensemble model [40]. EBM provides the predictive accuracy of boosting algorithms along with the 
interpretability of additive models, meanwhile allowing close examination of how much each feature contributes to the 
response prediction [41]. EBM provides accurate predictions as well as being interpretable, two essential elements of 
fairness aware HR analytics [41][42]. 
Fair Logistic Regression (FLR) is a modified version of traditional logistic regression where fairness constraints are 
added to the optimization process. These constraints reduce bias toward protected attributes (e.g., gender or marital 
status) when training the model, which helps produce a fairer decision boundary. FLR can serve as an interpretable 
baseline model while balancing interpretability with fairness-aware regularization. 
All models were developed in the Python language with traditional machine libraries (e.g. Scikit-learn, Interpret). Hyper 
parameters for the classifiers were identified during focused grid search with 5-fold cross-validation when only the most 
influential parameters demonstrated overall performance relative to computational efficiency and fairness stability 
(EOD ≤ 0.05). The final parameters implemented in all experiments are shown in Table 1. 
 

Table 1.  Hyperparameter Tuning for Classifiers 
Classifier Tuned Parameters Optimal Values 

RF n_estimators, max_depth n_estimators = 200, max_depth = 10 
XGBoost learning_rate, max_depth, n_estimators learning_rate = 0.1, max_depth = 6, n_estimators = 300 

SVM Kernel, C, Gamma Kernel = RBF, C = 1.0, Gamma = ‘scale’ 
KNN n_neighbors, Metric n_neighbors = 5, Metric = Minkowski (p=2) 
EBM learning_rate, interactions learning_rate = 0.05, interactions = 10 
FLR Fairness penalty (λ), Regularization (C) λ = 0.2, C = 1.0 

 
4.5 PERFORMANCE EVALUATION METRICS 

Several measures were applied to determine how well each model performed, namely Accuracy, Precision, Recall, 
F1-Score, and the Receiver Operating Characteristic curve. These measures allow assessment of classification 
performance, which captures not only correct classification overall, but also a balance between positive and 
negative predictions: [22][23]. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                 (7) 
 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                            (8) 
 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                 (9) 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

     (10) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                       (11) 
    ROC Curve: Plots the True Positive Rate (TPR) against the False Positive Rate (FPR).  
     Where: 

      TP:  True Positives, TN: True Negatives, FP:  False Positives, FN: False Negatives.      
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4.6. DATASET DESCRIPTION AND PREPROCESSING 
This research is based on the IBM HR Analytics Employee Attrition & Performance dataset [43] The dataset consists of 
1,470 employee records (or observations) each with 35 attributes (or variables), which consist of demographic, job, and 
performance related variables. The dependent variable, Attrition (Yes/No), indicates whether the employee has left the 
organization.  Approximately 16 % of records are attrition cases (“Yes”) and 84 % are non-attrition (“No”). Sensitive 
attributes considered for fairness analysis are Gender and Marital Status. Table 2 shows the types of features of the 
dataset. 

Table 2.- Summary of dataset features 
Category Example Features Type 
Demographic Age, Gender, MaritalStatus, Education, EducationField Mixed 
Job-related JobRole, Department, YearsAtCompany, JobLevel, JobSatisfaction, OverTime Mixed 
Performance  MonthlyIncome, PerformanceRating, YearsInCurrentRole, TrainingTimesLastYear, 

StockOptionLevel 
Numerical 

Target Attrition (Yes / No) Binary 
 
All records were complete with no missing values. Categorical variables (e.g., Gender, JobRole, MaritalStatus) were 
encoded using Label/One-Hot Encoding (e.g., Male = 0, Female = 1). Continuous attributes such as MonthlyIncome and 
YearsAtCompany were normalized via Min–Max scaling to [0, 1]. Outliers were checked using z-score (> 3) but 
retained due to minimal impact. Instead of synthetic resampling (SMOTE), fairness balance was achieved through the 
proposed FAMI feature-selection process. Finally, data were split into 80 % training and 20 % testing sets using 
stratified sampling to preserve class and demographic distributions. 
 
5.   RESULTS  

5.1 PERFORMANCE COMPARISON 
We trained and evaluated six classification models, using the 27 features selected through the Fairness-Aware Mutual 
Information (FAMI) method. The models evaluated were Fair Logistic Regression (FLR), XGBoost, Random Forest 
(RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Explainable Boosting Machine (EBM). 
Results performance are showing in Table 3.  

                     Table 3. - Performance Comparison of Classification Models Using Selected Fair Features. 

The results indicated some degree of variation across the models with respect to the accuracy, precision, recall, and F1. 
The EOD values for each of the models were all below the threshold of 0.05, indicating that the fairness constraint 
utilized in the feature selection procedures for each model was upheld across classifiers. In terms of accuracy, the 
models obtained results between 0.85 to 0.96, and in terms of F1 the models obtained results between .72 to .90. The 
EBM and KNN produced intermediate results under the framework of evaluation. Importantly, the models based on 
ensemble strategies (i.e., XGBoost & Random Forest) and linear optimization (FLR) produced better accuracy values 
than the distance-based model (KNN). The EBM and SVM produced intermediate results under the evaluation 
frameworks. 

5.2. ROC CURVE ANALYSIS 
For the Receiver Operating Characteristic (ROC) analysis was used for binary classification (Attrition = Yes/No). Each 
ROC curve demonstrates the relationship between the True Positive Rate (TPR) and False Positive Rate (FPR) at 
varying thresholds of decision. Figure 3 plots the ROC curves of all models using the features selected through the 
FAMI. 

Model Accuracy Precision Recall F1-score EOD 
Fair LR 0.96 0.91 0.89 0.90 0.005 
XGBoost 0.88 0.79 0.75 0.77 0.03 

Random Forest 0.88 0.78 0.74 0.76 0.04 
SVM 0.87 0.77 0.74 0.75 0.04 
EBM 0.87 0.78 0.73 0.75 0.05 
KNN 0.85 0.74 0.71 0.72 0.05 
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                                                 FIGURE. 3 - Receiver Operating Characteristic (ROC) Curve 
 
AUC values present a values ranging of 0.90 to 0.97 indicating different levels of discriminative ability for the classifiers. 
All classifiers have similar ROC characteristics, with no substantial differences of the curves of ROC. This indicates their 
consistent predictive performance under fairness. 
 
6. DISCUSSION 
The research findings underscore the need to prioritize fairness earlier in the machine learning pipeline - specifically 
during feature selection, rather than a downstream processing step. Using such tools as Mutual Information (MI) for 
feature relevance and the Equal Opportunity Difference (EOD) for fairness - a new measure we deem as Fairness 
Aware Mutual Information (FAMI) - we can create a feature subset which may lead to an acceptable level of predictive 
performance, fairness, and an interpretable feature selection process.  
We do not discount classifiers. The test results imply that fairness does not come at the expense of predictive accuracy, 
if fairness is experienced in the model selection process. The use of Fair Logistic Regression (FLR) achieved 
predictability of .96 and an EOD = .005, indicating that fairness constraints can be appropriately added and captured in 
the optimization process. 
This is precisely the question of whether we can achieve a particular level of accuracy but on the computations of less 
demographic bias in the models, not in the tests. These conditional statements imply that we may achieve fairness in the 
observed features and should preclude unwanted conditioning in any models, our future studies can consider 
representation across cohorts (i.e., gender or marital status) demographic triangle. The ensemble models (i.e. XGboost 
and Random Forest) reached high accuracy; however, these classifiers attained slightly higher EOD values (0.03 – 
0.04). 
Similarly, KNN did not perform satisfactorily across metrics, perhaps due to its sensitivity to scaling of features or 
noise. 
An important finding from this study concerns the interpretability of the resulting model. The model was interpretable 
and reduced the feature space to 27 attributes through FAMI and retained significant predictors, such as OverTime, 
MonthlyIncome, and JobSatisfaction. These predictors are somewhat intuitive and easily understandable for HR 
practitioners assisting in the use of the model in decision-making intervention. This finding also answered of whether to 
model may use interpretable models while simultaneously meeting fairness-aware and performance parameters, and 
establish it is reasonable to incorporate feature level control. 
In general, the results show that the pursuit of a fairness-aware feature selection can produce models that are socially 
responsible, while also being interpretable and accurate. While the present study does not employ multi-objective 
optimization, future work can adapt this framework by exploring multi-objective optimization techniques, e.g., Pareto-
based evolutionary algorithms, that are specifically designed to optimize fairness with predictive accuracy and 
interpretability in evolving HR environments. 
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7.  CONCLUSION 
This research developed a technique called Fairness-Aware Mutual Information (FAMI), which looks at fairness in the 
data in the feature selection stage and implementation by considering a specific fairness metric called the Equal 
Opportunity Difference (EOD). Our experiments with the IBM HR database demonstrate that the method optimally 
prioritized accuracy, fairness, and interpretability across six commonplace classifiers. FAMI balanced the reduction of 
bias, based on selecting features that were socially neutral, all without adversely affecting model performance. 
Limitations that were inherent with the study consisted of testing the methodology with a single dataset and not 
evaluating more than one fairness metric. Future research will expand the FAMI framework to test additional datasets, 
frameworks, and multiple fairness metrics, as well as consider multi-objective optimization to more broadly develop 
the framework. Overall, the results were promising and illustrate the promise of utilizing fairness-aware feature 
selection as a method for encouraging ethical practices and transparency for predictive models in HR analytics settings. 
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