
Wasit Journal of Computer and Mathematics Science
Journal Homepage: https://wjcm.uowasit.edu.iq/index.php/WJCM

e-ISSN: 2788-5879 p-ISSN: 2788-5879

Jordan-Lie Inner Ideals of the Orthogonal Simple Lie Algebras

Falah Saad Kareem1,∗ and Hasan M. Shlaka1
1Computer science and Maths, University of Kufa, Iraq

*Corresponding Author: Falah Saad Kareem

DOI: https://doi.org/10.31185/wjcm.Vol1.Iss2.39
Received: February 2022; Accepted: April 2022; Available online: June 2022

ABSTRACT: Let A be an associative algebra over a field F of any characteristic with involution ∗ and let K =
skew(A) = {a ∈ A|a∗ = −a} be its corresponding sub-algebra under the Lie product [a, b] = ab − ba for all a, b ∈ A.
If A = EndV for some finite dimensional vector space over F and ∗ is an adjoint involution with a symmetric non-
alternating bilinear form on V , then ∗ is said to be orthogonal. In this paper, Jordan-Lie inner ideals of the orthogonal
Lie algebras were defined, considered, studied, and classified. Some examples and results were provided. It is proved
that every Jordan-Lie inner ideals of the orthogonal Lie algebras is either B = eKe∗ or B is a type one point space.
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1. INTRODUCTION

Let A be a finite dimensional associative algebra over a field F. Recall that A becomes a Lie algebra A(−) under the
Lie bracket defined by (x, y

]
= xy − yx for all x, y ∈ A. Suppose that A has an involution ∗. Recall that an involution

is a linear transformation ∗ of an algebra A satisfying (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. We denote by
K = skew(A) = (a∗ = −a|a ∈ A} to be the vector space of the skew symmetric elements of A. Recall that K is a Lie algebra
with the Lie bracket defined by (x, y

]
= xy − yx for all x, y ∈ K. If the characteristic of F is non-equal 2, then K can be

represented in the form:

K = skew(A, ∗) = {a − a∗|a ∈ A}. (1.1)

Benkart was the first to introduce an inner ideal of a Lie algebra. She defined it as a subspace B of a Lie L such that the
space [B, [B, L]] is a subset of B [1]. She highlighted the relationship between inner ideals and an ad-nilpotent elements [2].
Recall that an adjoint map ad : L → gl(L) is a representation from a Lie L into its general linear algebra defined by
ad(l) = adl, where adl : L → L is a linear transformation defined by adl(x) = [l, x] for all x ∈ L. By restricting ad-
nilpotent elements, one can classify non-classical from classical simple Lie algebras over algebraically closed fields of
characteristic , 2, 3. Therefore, inner ideals play a role in classifying these algebras. Commutative inner ideals have
proved to be a useful tool for classifying both finite and infinite-dimensional simple Lie algebras. It is proved in [3] that
inner ideals play a role similar to one-sided ideal in associative algebras and can be used to construct Artinian structure
theory for Lie algebras. Inner ideals is an essential tool in the classification of Lie algebras. (see [4] and [3]). Inner ideals
of classical type Lie sub-algebras of associative(simple) rings were studied by Benkart and Fernandez Lopez (see [5]) .
Baranov and Shlaka [6] in 2019 classified Jordan-Lie inner ideals of the Lie sub-algebras of finite dimensional associative
algebras. An inner ideal B of A(k) or K(k) is said to be Jordan-Lie if B2 = 0. In recent paper, Shlaka and Mousa [7], studied
Jordan-Lie inner ideals A(k) in the case when A is simple over an algebraically closed fields of positive characteristic.
Jordan-Lie inner ideals of the Lie algebras K(k) in the case when A is simple with the symplectic involution over an
algebraically closed fields of positive characteristic were also been studied by Kareem and Shlaka in [8].
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In this paper, we study inner ideals of the orthogonal Lie algebras. We start with some preliminaries in section 2.
Section 3 is devoted to proof some results about Jordan-Lie inner ideals of the orthogonal Lie algebras and point space.

2. PRELIMINARIES
Throughout this paper, F is a field (algebraically closed), p ≥ 0 is the characteristic of F, V is a vector space (finite

dimensional over F), End(V) is the endomorphism algebra, so(V) is the orthogonal Lie algebra, A is an associative
algebra (finite dimensional over F) with an involution ∗, K = skew(A, ∗) is the Lie subalgebra of A defined as (1.1), L is
a Lie algebra (finite dimensional over F), Mn(F) is the matrix algebra consisting of all n × n-matrices and son(F) is the
orthogonal Lie algebra of matrix .

Recall that an involution ∗ of A is a linear transformation of A such that (a∗)∗ = a and (ab)∗ = b∗a∗ for any a, b ∈ A [9].
Note that ∗ does not required to be F-linear. On the other hand, it is obvious that ∗ maps the center Z into it self. Since
the restriction of ∗ over F is an automorphism of order less than or equal to 2, it maps every sub-field of Z into itself.
Therefore F∗ = F. Here we have two possibilities which are either ∗ is F-linear or not. Thus, we have the following
definition.
Definition 2.1 [13, 7.2] An involution is said to be of the first kind in case that ∗ is F-linear, that is the restriction of ∗
relative to F is the identity. Otherwise, it is called of the second kind.
Remark 2.2 In this paper, we consider involution of the first kind only.
Definition 2.3 Let B be a subspace of L. Then B is said to be

1. [1] An inner ideal if (B, (B, L]] ⊆ B.
2. [1] A commutative inner ideal if B is an inner ideal such that [B, B] = 0.
3. [6] A Jordan-Lie inner ideal (or simply, J-Lie) if L = skew(A) and B is an inner ideal such that B2 = 0.

Example 2.4 Consider the associative algebra A = Mn(F). Then {ei j|1 ≤ i, j ≤ n} form a basis of A consisting of matrix
units, where ei j is the n × n-matrix with the entry 1 in the i jth position and zero elsewhere. Thus, the Lie algebra

K = skew(A) = so2n(F) has the following basis {ai j, bi j, ci j|1 ≤ i, j ≤ n}, where

ai j = (ei j − en+ j,n+i), bi j = (ei,n+ j − e j,n+i) and ci j = (en+i, j − en+ j,i).

Then B = Fa12 is J-Lie of skew(A, ∗). Indeed, for any x, y ∈ B, we have x = αa12 = α(e12 − en+2,n+1), y = βa12 =

β(e12 − en+2,n+1). Since

x.y = α(e12 − en+2,n+1β(e12 − en+2,n+1 = 0,

B2 = 0. It remain to show that [x, [y, l]] ∈ B for each l ∈ K.
Let l =

∑n
i, j=1ζi jai j +

∑n
i, j=1ηi jbi,n+ j +

∑n
i, j=1γi jci j ∈ K. Then

xly = α(e12 − en+2,n+1)(
n∑

i, j=1

ζi jai j +

n∑
i, j=1

ηi jbi j +

n∑
i, j=1

γi jci j)y

= α

n∑
j=1

(ζ2 je1 j + η2 je1,n+ j − η j2e1,n+ j + ζ j1en+2,n+ j − γ1 jen+2, j + γ j1en+2, j)y

= αβ(ζ21e12 − η22e1,n+1 − η22e1,n+1 − ζ21en+2,n+1 − γ11en+2,2 + γ11en+2,2)

= αβζ21(e12 − en+2,n+1) = αβζ21a12 ∈ Fa12 = B.
and

ylx = β(e12 − en+2,n+1)(
n∑

i, j=1

ζi jai j +

n∑
i, j=1

ηi jbi j +

n∑
i, j=1

γi jci j)x

= β

n∑
j=1

(ζ2 je1 j + η2 je1,n+ j − η j2e1,n+ j + ζ j1en+2,n+ j − γ1 jen+2, j + γ j1en+2, j)x
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= αβ(ζ21e12 − η22e1,n+1 − η22e1,n+1 − ζ21en+2,n+1 − γ11en+2,2 + γ11en+2,2)

= αβζ21(e12 − en+2,n+1) = αβζ21a12 ∈ Fa12 = B.
Therefore, [x, [y, l]] = xyl − xly − ylx + lyx = −xly − ylx ∈ B, as required.

Definition 2.5 [10] A subspace P of L is said to be point space if (P, P] = 0 and ad2
x(L) = Fx for every non zero element

x ∈ P.
Example 2.6 Let K = so2n+1(F), If n = 1, then

K = so3(F) = span{

 0 α1 α2
−α2 α3 0
−α1 0 −α3

 |α1, α2, α3 ∈ F}

has a basis are

{b1 =

 0 1 0
0 0 0
−1 0 0

 , b2 =

 0 0 1
−1 0 0
0 0 0

 , b3 =

 0 0 0
0 1 0
0 0 −1

}
Then , we need to show that b1, is a point space. For x ∈ Fb1 we have

x =

 0 ζ 0
0 0 0
−ζ 0 0

 for some ζ ∈ F. Let l =

 0 α1 α2
−α2 α3 0
−α1 0 −α3

 ∈ so3(F).

Then, ad2
x(L) = (x, (x, l]]

= [x,

 −ζα2 ζα3 0
0 0 0
0 −ζα1 −ζα2

 −
 −ζα2 0 0

0 −ζα2 0
ζα3 −ζα1 0

]
= [

 0 ζ 0
0 0 0
−ζ 0 0

 ,
 0 ζα3 0

0 ζα2 0
−ζα3 0 −ζα2

]
=

 0 ζ2α2 0
0 0 0
0 −ζ2α3 0

 −
 0 0 0

0 0 0
ζ2α2 −ζ2α3 0

 =
 0 ζ2α2 0

0 0 0
−ζ2α2 0 0

 ∈ Fb1

Therefore, Fb1 and also Fb2 is a point space. while Fb2 is not point space.
We will need the following lemma. For the proof see [11].
Lemma2.7 [11] Let B be an I-ideal of L. If B2 = 0, then
(1) b1lb2 + b2lb1 ∈ B for all b1, b2 ∈ B and l ∈ L.
(2) blb ∈ B for all b ∈ B and l ∈ L.

Definition 2.8 [9] Let ψ : V × V → F be a nondegenerate symmetric bilinear form. For each x ∈ EndV define x∗ by
the following property ψ (x∗(v),w) = ψ (v, x(w)) for all v,w ∈ V. Then the map ∗ : EndV → EndV is an involution of the
algebra EndV , called the adjoint involution with respect to ψ.
Theorem 2.9 [10, Ch.1, introduction ] The map ψ 7→ ∗ induced one to one correspondence between equivalence classes
of nondegenerate bilinear forms on V modulo multiplication by a factor in F× and involution (of first kind) on EndV .
Definition 2.10 [9] Let ∗ be an involution of EndV . We say that ∗ is orthogonal if it is adjoint to a symmetric non-
alternating bilinear form on V .
Definition 2.11 [2] Let A be an associative algebra with involution ∗ over a field Fand let a ∈ A. Then we define the trace
of a by τ (a) = a − a∗.

3. JORDAN LIE INNER IDEAL OF THE ORTHOGONAL LIE ALGEBRAS
Theorem 3.1 Suppose that A is simple with involution and p , 2. Let x ∈ skew(A, ∗). Then x = xyx for some y ∈
skew(A, ∗).

Proof. We have x∗ = −x. Since A is V-Neumann algebra, x = xax for some a ∈ A. Put y = 1
2 (a− a∗) ∈ skew(A, ∗). Then

xyx = 1
2 x(a − a∗)x = 1

2 (xax − xa∗x) = 1
2 (x − (xax)∗) = 1

2 (x − x∗) = 1
2 (2x) = x

Lemma 3.2 Let eKe∗ ⊆ B be a subspace of K = skew(A, ∗) such that e ∈ BK and e∗ ∈ KB. If e
′

be an idempotent in A
such that ee

′

= e
′

e = 0, then e
′

Be
′ ∗
⊆ B.

Proof. If e
′

Be
′∗ = 0. Then e

′

Be
′∗ ⊆ B. Suppose now that e

′

Be
′∗ , 0. Then ∃a ∈ B such that e

′

ae
′∗ , 0.

e
′

ae
′∗ = (1 − e)a(1 − e∗) = a − (ea + ae∗) + eae∗

As e ∈ BK, ∃b1 ∈ B and k1 ∈ K such that e = b1k1. This implies that
e∗ = (b1k1)∗ = k1

∗b∗ = k1b1
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We have a ∈ B and eae∗ ∈ eKe∗ ⊆ B. By Lemma 2.7,
ea + ae∗ = b1k1a + ak1b1 ∈ B

Therefore, e
′

ae
′∗ ∈ B, as required.

Recall that A is simple, so A can be identified with End(V) for some vector space V . We have the following proposition.
Proposition 3.3 Let ψ : V × V → F be a non-singular form and let ∗ be an adjoint involution of A = End(V). Let e, e

′

be
idempotent in A such that ee

′

= e
′

e = 0. Suppose that eKe∗ , 0. Then the following hold
For each k ∈ K such that eke∗ , 0, we have
(1) c = k + e

′

ke
′∗ , 0.

(2) e
′

Ke∗ = 0.
(3) eKe

′∗ = 0.
Proof. (1) Let v ∈ V such that ψ(v, eke∗(v)) , 0. Such v exists because ψ is non-singular. We need to show that
ψ(e∗(v), ce∗(v) , 0. Since ee

′

= 0,
ψ(e∗(v), ce∗(v)) = ψ(v, ece∗(v))
= ψ(v, e(k + e

′

ke
′ ∗)e∗(v))

= ψ(v, eke∗(v)) + ψ(v, ee
′

ke
′∗e∗(v))

= ψ(v, eke∗(v)) , 0.
(2) Let w ∈ e

′

Ke∗. Then there is k ∈ K such that w = e
′

ke∗. For each v ∈ V we have
ψ(e∗(v),we∗(v)) = ψ(v, ewe∗(v)) = ψ(v, ee

′

ke∗e∗(v)) = ψ(v, 0) = 0,
so w = e

′

Ke∗ = 0.
(3) Let h ∈ eKe

′∗. Then there is k ∈ K such that h = eke
′∗. For each v ∈ V we have

ψ(e∗(v), he∗(v)) = ψ(v, ehe∗(v)) = ψ(v, e(eke
′∗)e∗(v)) = ψ(v, 0) = 0.

Therefore, h = eke
′∗ = 0.

The idea of the following lemma comes from McCrimmon’s paper [2].
Lemma 3.4 Let A be an associative algebra with involution ∗ over a field F. Suppose that L = skew (A, ∗). Then the trace
τ that defined above by τ (a) = a − a∗ has the following properties:

(1) τ is linear.
(2) τ (x) ∈ L for any x ∈ L.
(3) xτ (a) x = τ (xax) For any a ∈ A and x ∈ L.
(4) aτ (b) + τ (b) a∗ = τ (ab) + τ (ba∗) For any a, b ∈ A.
(5) τ (a) xτ (a) = τ (axa) − axa∗ − a∗xa For any a ∈ A and x ∈ L.

Proof. (1) Suppose that a, b ∈ A and α ∈ F. Then
τ (αa) = αa − (αa)∗ = α (a − a∗) = ατ (a) ;

τ (a + b) = (a + b) − (a + b)∗ = (a − a∗) + (b − b∗) = τ (a) + τ (b) .

Thus, τ is linear.
(2) Let a ∈ A Then
(τ (a))∗ = (a − a∗)∗ = a∗ − a = − (a − a∗) = −τ (a).
Therefore, τ (a) ∈ L.
(3) Let a ∈ A and x ∈ L Then we have

xτ (a) x = x (a − a∗) x = xax − xa∗x = xax − (x∗ax∗)∗ = τ (xax) .
(4) Let a, b ∈ A Then

aτ (b) + τ (b) a∗ = a (b − b∗) + (b − b∗) a∗ = ab − ab∗ + ba∗ − b∗a∗

= (ab − b∗a∗) + (ba∗ − ab∗)
= (ab − (ab)∗) + (ba∗ − (ba∗)∗) = τ (ab) + τ (ba∗)

(5) For any a ∈ A and x ∈ L we have
τ (a) xτ (a) = (a − a∗) x (a − a∗) = axa + a∗xa∗ − axa∗ − a∗xa
= (axa − (axa)∗) − axa∗ − a∗xa = τ (axa) − axa∗ − a∗xa.

Lemma 3.5 Suppose that p , 2, 3 and K = skew (EndV, ∗). Then the following hold:
(1) If ψ (Kv,w) = 0 for some nonzero vectors v,w ∈ V , then w ∈ Fv. Consequently Kv = v⊥ for any nonzero vector

v ∈ V .
(2) If U is a subspace such that dimU > 1, then KU = V .
(3) A transformation x ∈ K satisfies xKx∗ = 0 if and only if rank (x) ≤ 1.

Proof. (1) Suppose that v,w ∈ V be nonzero vectors such that ψ (Kv,w) = 0. For the contrary we assume that w < Kv.
Then we could find a linear transformation a ∈ A such that a (w) = 0 and ψ (a (v) ,w) , 0. Note that a − a∗ ∈ K. Thus,
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0 , ψ (a (v) ,w) = ψ (a (v) ,w) − 0 = ψ (a (v) ,w) − ψ (v, a (w))
= ψ (a (v) ,w) − ψ (a∗ (v) ,w) = ψ ((a − a∗) (v) ,w) = 0,

a contradiction Therefore w ∈ Kv Consequently, for any nonzero vector v we have v⊥ = Kv
(2) Suppose that U be a subspace of V such that dimU > 1 Then

KU =
∑

w∈U Kw =
∑

w∈Uw⊥ = V
That is, any w⊥has co-dimensional 1. Thus, if w⊥1 = w⊥2 . Then w1 ∈ Kw2. Hence any two independent vectors w⊥i will

span all V .
(3) If x∗Kx = 0 Then

0 = ψ (x∗Kx (v) , v) = ψ (Kx (v) , x (v)) f or all v ∈ V.
This implies K (x (V)) , V , so by (2), we get that dim (x (V)) ≤ 1.

Theorem 3.6 Let e, e
′

, f be an idempotent in A = EndV such that ee
′

= e
′

e = 0 and e∗e = 0. Let e∗ f = f e∗ = 0 and
e∗
′

f = f e∗
′

= f ,If B = eKe
′∗ then B is a J−Lie.

Proof. Let w = eke
′∗ , 0, by Theorem 3.1, w = wz

′

w for some z
′

∈ K.
put z = e

′∗z
′

e. Then
wzw = w(e

′∗z
′

e)w = eke
′∗e

′∗z
′

eeke
′∗ = eke

′∗z
′

eke
′∗ = wz

′

w
Let f = zw = (e

′∗z
′

e)(eke
′∗) = e

′∗z
′

eke
′∗. Then

e∗ f = e∗e
′∗z

′

eke
′∗ = 0

and
f e∗ = e

′∗z
′

eke
′∗e∗ = (1 − e∗)z

′

ek(1 − e∗)e∗ = 0
e
′∗ f = e

′∗e
′∗z

′

eke
′∗ = e

′∗z
′

eke
′∗ = f

Also
f e
′∗ = e

′∗z
′

eke
′∗e

′∗ = f
By Lemma 3.5 (3), since rank( f ) = 1, so rank( f ∗) = 1. Therefore,

f ∗K f = (e
′∗z

′

eke
′∗)∗K(e

′∗z
′

eke
′∗) = e

′

k∗e∗z
′∗e

′

Ke
′∗z

′

eke
′∗ = 0

and
f K f ∗ = e

′∗z
′

eke
′∗Ke

′

k∗e∗z
′∗e

′

= 0
Moreover, for any u ∈ Ker(w), f (u) = zw(u) = 0
Therefore, Ker(w) ⊆ Ker( f ), both have co-dimension. Then

Ker(w) = Ker( f ) = Ker(w
′

)

Recall f = zw is idempotent of rank 1. Let c ∈ Im(w
′

) such that c < Ker(w
′

). Then w
′

f (c) , 0
(if w

′

f (c) = 0, then either c ∈ Ker( f ) or c ∈ Ker(w
′

) this is a contradiction)
If w

′

f (c) , 0, then c ∈ Im(w
′

f ). Since c ∈ Im(w
′

), so c ∈ Im(w
′

f )
Therefore, Im(w

′

) ⊆ Im(w
′

f ). both have co-dimension, so
Im(w

′

) = Im(w
′

f )
Since Ker( f ) = Ker(w

′

), so
Ker(w

′

f ) = Ker(w
′

)
Therefore, w

′

f = w
′

for any w
′

∈ eBe
′∗.

Next, we claim that
B ⊆ B

′

= eKe∗ + τ(ek f ),
for any d ∈ B we have

d = ede∗ + ede
′∗ + e

′

de∗ + e
′

de
′∗

= ede∗ + ede
′∗ − (ede

′∗)∗

= ede∗ + τ(ede
′∗)

= ede∗ + τ(w
′

)

Since w
′

( f ) = w
′

∈ eBe
′∗, we have that

K = eke∗ + τ(w
′

f ) = ede∗ + τ(ede
′∗ f )

As e
′∗ f = f , so

K = eke∗ + τ(ed f ) ∈ eKe∗ + τ(eK f )
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put B
′

= eKe∗ + τ(eK f ). Then
(e + f ∗)K(e + f ∗)∗ = (e + f ∗)K(e∗ + f )

= eKe∗ + eK f + f ∗Ke∗ + f ∗K f

= eKe∗ + eK f − (eK f )∗

= eKe∗ + τ(eK f )

Let g = e + f ∗, then
g2 = (e + e

′∗z
′

eke
′∗)(e + e

′∗z
′

eke
′∗)

= e + e
′∗z

′

eke
′∗ = g

and g∗g = (e∗ + f )(e + f ∗)
= (e∗ + e

′∗z
′

eke
′∗)(e + e

′

ke∗z
′∗e

′

) = 0
Now, let gk1g∗, gk2g∗ ∈ gKg and l ∈ K. Then

[gk1g∗, [gk2g∗, l]] = [gk1g∗, gk2g∗l − lgk2g∗]
= gk1g∗gk2g∗l − gk2g∗lgk1g∗ − gk1g∗lgk2g∗ + lgk2g∗gk1g∗

= −2gk1g∗lgk2g∗ = g(−2k1g∗lgk2)g∗ ∈ gKg∗

Therefore, B
′

= gKg∗ is an I-ideal of Kand B
′

is J-Lie of K. as required.
Theorem 3.7 Let e, e

′

, f be an idempotent in EndV such that ee
′

= e
′

e = 0. Let B be a J−Lie of K = skew(A, ∗) such that
bKb , Fb for all b ∈ B. Then the following hold

1. E(V = eKe∗K(v⊥0 f orallv0 ∈ V
2. EBe

′∗(V = e(V)
Proof. (1) Suppose that bKb , Fb. We have B ⊆ B

′

= (e + f ∗)K(e + f ∗)∗

By Lemma 3.5 (1), we have Kv0 = v⊥0 . Thus eKe∗K(v0) = eKe∗(v⊥0 )
Suppose that dim(e∗(v⊥0 )) ≥ 1.
If dim(e∗(v⊥0 )) > 1, then by Lemma 3.5 (2),

Ke∗(v⊥0 ) = V =⇒ eKe∗(v⊥0 ) = e(V)
Therefore, e(V) = eKe∗(v⊥0 ).
and if dim(e∗(v⊥0 )) = 1, then there exist a non-zero u0 ∈ V such that

e∗(v⊥0 ) = Fu0. (3.2)

Then
eKe∗(v⊥0 ) = eK(u0) = e(u⊥0 )

for all u ∈ u⊥0 , we have e(u) ∈ (v⊥0 )⊥ = Fv0, because
e(u) ∈ e(u⊥0 ) = eKe∗(v⊥0 ) ⊆ B(v⊥0 ) ⊆ K(v⊥0 ) = (v⊥0 )⊥ = Fv0,

so
u⊥0 = e

′

(V) + Fv0
Thus,

eKe∗(u0) = e(u⊥0 ) = e(e
′

(V) + Fv0) = Fv0. (3.3)

But for any non-zero r ∈ u⊥0 and α ∈ F, we have e∗(r) = αu0

αe∗(u0) = e∗(αu0) = e∗(e∗(r)) = e∗(r) = αu0.

so e∗(u0) = u0. Thus, for any y = ey
′

e∗ ∈ eKe∗, we can assume that y(u0) = 0
Let y(V) ⊆ u⊥0 , by equation (3.3),

y(V) = ey
′

e∗(V) = e(ey
′

e∗(V)) = e(y(V)) ⊆ e(u⊥0 ) = Fv0

By Lemma 3.5 (3), if y has rank 1, then y∗Ky = yKy = 0.
By Theorem 3.1, ∃0 , l ∈ K such that y = yly ∈ yKy = 0.
Then, y ∈ eKe∗ ⊆ B. Therefore y ∈ Fb, but eKe∗ = bKb
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so y ∈ bKb. Thus, if bKb , Fb, then eKe∗K(v0) = e(V), as required.
(2) for any l,l^’\in K, we have ele^\ast\in eKe^\ast\subseteq B
Let b

′′

= −[ele∗, [b
′

, l
′

]] ∈ [B, [B,K]] ⊆ B
b
′

∈ B is the same b
′

that satisfies w = eb
′

e∗
′

, 0. Since
b
′′

= −[ele∗, [b
′

, l
′

]] = −[ele∗, b
′

l
′

− l
′

b
′

]
= −(ele∗b

′

l
′

− b
′

l
′

ele∗ − ele∗l
′

b
′

+ l
′

b
′

ele∗)
eb
′′

e
′∗ = −e(ele∗b

′

l
′

− b
′

l
′

ele∗ − ele∗l
′

b
′

+ l
′

b
′

ele∗)e
′∗

= −eele∗b
′

l
′

e
′∗ + eb

′

l
′

ele∗e
′∗ + eele∗l

′

b
′

e
′∗ − el

′

b
′

ele∗e
′∗

= −ele∗b
′

l
′

e
′∗ + ele∗l

′

b
′

e
′∗

and ele∗b
′

l
′

e
′∗ = bxlxbb

′

l
′

e
′∗ = 0. As (bb

′

= 0)
eb
′′

e
′∗ = ele∗l

′

b
′

e
′∗ = ele∗l

′

(e + e
′

)b
′

e
′∗

= ele∗l
′

eb
′

e
′∗ + ele∗l

′

(e
′

b
′

e
′∗)

By using equation , (e
′

b
′

e
′∗ = 0), we have eb

′′

e
′∗ = ele∗l

′

(eb
′

e
′∗).

Since w = eb
′

e
′∗, so eb

′′

e
′∗ = ele∗l

′

w for any l, l
′

∈ K.
Let v ∈ V. Then eb

′′

e
′∗(v) = ele

′∗l
′

w(v) = ele
′∗l
′

(v0)
Since bKb , Fb, so we must have

eBe
′∗(V) = eKe∗K(v0)

Since eKe∗K(v0) = e(V), we get that
eBe

′∗(V) = e(V)
as required.

Theorem 3.8 Let e, f be an idempotent in A = EndV and let B be a J−Lie of K = skew(A, ∗). Suppose that bKb = Fb
for all b ∈ B.Then B is a type one point space.
Proof. Suppose that bKb = Fb. we are going to prove that B is a type one point space

Recall that B ⊆ B
′

= eKe∗ + τ(eK f ), so
B
′

= eKe∗ + τ(eK f ) = bxKxb + τ(eK f )

= bKb + τ(eK f ) (3.4)

Since bKb = Fb, so
B
′

= Fb + τ(eK f )
for any c ∈ B

′

, there exist λ ∈ F and l ∈ K such that
c = λb + τ(el f )

Then ∀y ∈ K, we have
cyc = (λb + τ(el f ))y(λb + τ(el f ))
= λ2byb + λbyτ(el f ) + λτ(el f )yb + τ(el f )yτ(el f )
= λ2byb + λ(by)τ(el f ) + λτ(el f )(by)∗ + τ(el f )yτ(el f )

By Lemma 3.4 (3),
cyc = λ2byb + λτ(byel f ) + λτ(el f (by)∗)
+τ(el f yel f ) − el f y(el f )∗ − (el f )∗yel f
λ2byb + λτ(byel f ) + λτ(el f yb) + τ(el f yel f ) − el f y f ∗l∗e∗ − f ∗l∗e∗yel f

Since f K f ∗ = f ∗K f = 0.

cyc = λ2byb + λτ(byel f ) + λτ(el f yb) + τ(el f yel f ) (3.5)

we need to calculate each term. Since bKb = Fb, so

byb = αb (3.6)

τ(byel f ) = τ(bybxl f ) = τ(αbxl f ) = τ(α(el f ))

= ατ(el f ) (3.7)

for the third one we have
el f yb = bxl f yb ∈ bAb

Since τ(a) ∈ L for any a ∈ A,τ(el f yb) ∈ K, then bτ(xl f y)b ∈ bKb ⊆ B.
By Lemma 3.5 (3),

τ(el f yb) = τ(bxl f yb) = bτ(xl f y)b = βb (3.8)
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for some β ∈ F
for the four one we have

el f yel f = el f ybxl f = (el f )yb(xl f ) = 0
Since f ∗L f = 0, so by f ∗le∗xl f = 0. Then

(el f )y(el f ) = el f ybxl f − by f ∗le∗xl f

= (el f yb − (el f yb)∗)xl f

= τ(el f yb)xl f

βb(xl f ) = βel f

τ(el f yel f ) = βτ(el f ) (3.9)

Substituting equation 3.6 , 3.7, 3.8 and 3.9 in 3.5, we get that

cyc = (λ2α)b + (λα)τ(el f ) + (λβ)b + βτ(el f )

= (λ2α + λβ)b + (λα + β)τ(el f )

= (λα + β)c

Therefore, cKc = Fc, B
′

is a point space
since B is a maximal point space, so B = B

′

Therefore, B is a type one point space.
Theorem 3.9 Suppose that A is simple with the orthogonal involution ∗ defined on it. If p , 2, 3 and A is of dimensional
greater than 16, Then every J−Lie B of (K,K] is of the form eKe∗ or B is a type one point space. where e is an idempotent
in A such that e∗e = 0.
Proof. Let b ∈ B, Then by Theorem 3.1, ∃x ∈ K such that b = bxb.

Let e = bx. Then e∗ = (bx)∗ = x∗b∗ = xb, since B is J−Lie, b2 = 0, so e∗e = xbbx = 0 . By Lemma 3.2, bKb ⊆ B
Suppose that bKb ⊆ B is maximal with the property. Since

bKb = bxbKbxb ⊆ bxKxb = eKe∗;
eKe∗ = bxKxb ⊆ bKb,

We have

eKe∗ = bKb ⊆ B (3.10)

Next, we need to show that B ⊆ eKe∗

Let e
′

= 1 − e and e
′∗ = (1 − e)∗ = 1 − e∗, we have

b = 1b1 = (e + e
′

)b(e∗ + e
′∗) = ebe∗ + ebe

′∗ + e
′

be∗ + e
′

be
′∗ (3.11)

First, we need to show that e
′

Ke
′∗ = 0

It remains to show that e
′

Ke
′∗ = 0. Assume to the contrary that e

′

Ke
′∗ , 0. Then ∃c

′

∈ K such that z = e
′

c
′

e
′ ∗
, 0. By

Lemma 3.2 , e
′

Ke
′ ∗
⊆ B, so z ∈ B. Let c = b + z ∈ B. In the view of Lemma 3.3(1), we have c , 0

First, we claim that bKb ⊆ cKc. Since c ∈ B, by Lemma 2.7, cKc ⊆ B. Take any y ∈ K. Then
ce∗yec = (b + z)e∗ye(b + z)
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= be∗yeb + be∗yez + ze∗yeb + ze∗yez
Since ez = e(e

′

c
′

e
′∗) = 0 and ze∗ = (e

′

c
′

e
′∗)e∗ = 0,

ce∗yec = be∗yeb = bxbybxb = byb
so ce∗Kec = bKb. As ce∗Kec ⊆ cKc, we get that

bKb = ce∗Kec ⊆ cKc (3.12)

Next, we need to show that zKz ⊆ cKc. Take any l ∈ K, we have
ce
′ ∗le

′

c = (b + z)e
′∗le

′

(b + z)

= be
′∗le

′

b + be
′ ∗le

′

z + ze
′∗le

′

b + ze
′∗le

′

z (3.13)

By computing mutually each term, we get that
be
′∗le

′

b = b(1 − e∗)l(1 − e)b = blb − bleb − be∗lb + be∗leb.

= blb − blbxb − bxblb + bxblbxb = blb − blb − blb + blb = 0 (3.14)

be
′ ∗le

′

z = b(1 − e∗)l(1 − e)z = blz − blez − be∗lz + be∗lez

= blz − bxblz = blz − blz = 0 (3.15)

ze
′∗le

′

b = z(1 − e∗)l(1 − e)b = zlb − zleb − ze∗lb + ze∗leb = zlb − zlb = 0 (3.16)

ze
′∗le

′

z = z(1 − e∗)l(1 − e)z = zlz − zlez − ze∗lz + ze∗lez = zlz (3.17)

By substituting equation 3.14, 3.15, 3.16 and 3.17 in 3.13, we get that ce
′ ∗le

′

c = zlz. Since l ∈ K, by Lemma 3.2, e
′∗le ∈ K,

so

zKz = ce
′∗Ke

′

c ⊆ cKc (3.18)

Recall that z = e
′

c
′

e
′∗ ∈ K. By Theorem 3.1, ∃k ∈ K such that z = zkz ∈ zKz. By equation 3.18, we get that z ∈ zKz ⊆ cKc.

But z < bKb ⊆ cKc, a contradiction. Therefore,

e
′

Ke
′∗ = 0 (3.19)

Therefore, e
′

be
′∗ = 0. Now we have to consider to two cases depending on eKe

′∗ whether it is zero or not
If eKe

′∗ = 0, then (e
′

be∗)∗ = eb∗e
′∗ = −ebe

′∗ ∈ eKe
′∗

substituting in equation (3.11), we get that
b = ebe∗ + ebe

′∗ − ebe
′∗ + e

′

be
′∗

= ebe∗ ∈ eKe∗

Therefore, B = eKe∗.
Suppose now that eKe

′∗ , 0. Then ∃k ∈ K such that w = eke
′∗ , 0. Since

w∗Kw = (eke
′∗)∗K(eke

′∗)
= e

′

k∗e∗Keke
′∗ ⊆ e

′

Ke
′∗ = 0,

By Lemma 3.5 (3), rank w ≤ 1, so rank(w) = 0 or rank(w) = 1. Thus, rank(w) = 1 (because w , 0).
Hence, dimw(V) must be one, fix any v0 ∈ V such that w(V) = Fv0.
Let v ∈ V such that

w(v) = v0. (3.20)

V = Im(w) + Ker(w)
= Fv + Ker(w)

Let w
′

= ele
′∗ ∈ eBe

′∗ be a non-zero transformation. Then
0 = e

′

(l(e∗Ke)k + k(e∗Ke)l)e
′∗

= e
′

l(e∗Ke)ke
′∗ + e

′

k(e∗Ke)le
′∗
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= (e
′

le∗)K(eke
′∗) + (e

′

ke∗)K(ele
′∗)

= w
′∗Kw + w∗Kw

′

If u ∈ Ker(w), then
0 = ψ(0(v), u) = ψ((w

′∗Kw + w∗Kw
′

)(v), u)
= ψ(w

′∗Kw(v), u) + ψ(w∗Kw
′

(v), u)
= ψ(Kw(v),w

′

(u)) + ψ(Kw
′

(v),w(u))
Since u ∈ Ker(w), so w(u) = 0.
= ψ(Kw(v),w

′

(u))
By Lemma 3.5 (1), w

′

(u) ∈ Fv0. Now either w
′

(u) = 0 or w
′

(u) , 0 for all u ∈ Ker(w)
If w

′

(u) = 0 for all u ∈ Ker(w), then Ker(w) ⊆ Ker(w
′

)
But dim(w(v)) = dim(w

′

(v)) = 1, so Ker(w) = Ker(w
′

)
Suppose now that w

′

(u) , 0 for some u ∈ Ker(w), then Im(w
′

) = Fv0 ⊆ Im(w).
Since both have dimension 1, so Im(w

′

) = Im(w) = Fv0.
Then by Theorem 3.6, B

′

is a J−Lie.
Now, we need to show that B = B

′

, by Theorem 3.7,
e(V) = eKe∗K(v⊥0 )

and

eBe
′∗(V) = e(V) (3.21)

we claim that eB
′

e
′∗(V) ⊆ eBe

′∗

we have B
′

= eKe∗ + τ(eK f )
eB

′

e
′∗ = e(eKe∗ + τ(eK f ))e

′∗

= eKe∗e
′∗ + eK f e

′∗ − (eK f )∗e
′∗

= eK f e
′∗ − f ∗Ke∗e

′∗ = eK f e
′∗

Since e∗e
′∗ = 0. Recall that f e

′∗ = f ,
eB

′

e∗ = eB f
Let el f ∈ eK f

el f (v) = elzw(v) = elz(v0) ∈ eKK(v0) = eK(v⊥0 ) = e(v0) ∈ e(V)
because (w(v) = v0). By equation (3.21), e(V) = eBe

′∗

el f (v) ∈ eBe
′∗(V). Therefore ∃w

′

∈ eBe
′∗ such that el f (v) = w

′

(v).
Since V = Fv0 + Ker(w) and Ker( f ) = Ker(w) = Ker(w

′

) fore equation (3.1), and w
′

∈ eBe
′∗,

for any el f ∈ eK f = eB
′

e
′∗, there exist w

′

∈ eBe
′∗ such that el f = w

′

∈ eBe
′∗

Then eB
′

e
′∗ ⊆ eBe

′∗ and B
′

⊆ B. Therefore B
′

= B.
There exist idempotent (e + f ∗) such that B = (e + f ∗)K(e + f ∗)∗.
Now, when bKb = Fb, by Theorem 3.8, B

′

= B is a type one point space.
Suppose that Im(w

′

) = Im(w) = Fv0 for any w
′

∈ eBe
′∗, we need to show that B is a type one point space

Recall that wzw = w,z = e
′∗z

′

e
Let

f = wz = eb
′

e
′∗z

′

e
Then

f e
′

= eb
′

e
′∗z

′

e(1 − e) = 0
and

e
′

f = (1 − e)eb
′

e
′∗z

′

e = 0
f 2 = (eb

′

e
′∗z

′

e)(eb
′

e
′∗z

′

e) = eb
′

e
′∗z

′

e = f
e f = eeb

′

e
′∗z

′

e = eb
′

e
′∗z

′

e = f and f e = eb
′

e
′∗z

′

ee = f
Since rank( f ) = 1, so rank( f ∗) = 1
Recall that f ∗K f = f K f ∗ = 0. we have Im(w) = Im( f )
for any w

′

∈ eBe
′∗, we have Im(w) = Im( f ) = Im(w

′

)
we have going to prove that there exist point space B

′

= eKe∗ + τ( f Ke
′∗) such that B = B

′

First, we claim that f w
′

= w
′

for any w
′

∈ eBe
′∗

Let u ∈ Ker(w
′

), then f w
′

(u) = 0
so Ker(w

′

) ⊆ Ker( f (w
′

)), therefore Ker(w
′

) = Ker( f (w
′

)) ( co-dimension 1)
Since Im(w

′

) = Im( f w
′

), so f w
′

= w
′

for any w
′

∈ eBe
′∗.

Second, we claim that
B ⊆ B

′

= eKe∗ + τ( f Ke
′∗)
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take K ∈ B, then
K = eKe∗ + eKe

′∗ + e
′

Ke∗ + e
′

Ke
′∗

K = eKe∗ + τ(eKe
′∗)

K = eKe∗ + τ(w
′

)
Since f w

′

= w
′

, so
K = eKe∗ + τ( f eKe

′∗)
because f e = f . For all K ∈ B, we have

K = eKe∗ + τ( f Ke
′∗)

B ⊆ B
′

= eKe∗ + τ( f Ke
′∗)

Now, we claim that B is a point space, that is bKb , Fb. Then
eKe∗K(v0) ⊆ eKe

′∗(v0) ⊆ f Ke
′∗(v) = Fv0

but
eKe

′∗K(v0) = e(V) , Fv0

because ranke(V) > 1.
Finally, we claim that B

′

= eKe∗ + τ( f Ke
′∗) is point space

By using equation (3.4), and our assume that bKb = Fb, we have
B
′

= eKe∗ + τ( f Ke
′∗)

= bxKxb + τ( f Ke
′∗)

= bKb + τ( f Ke
′∗) = Fb + τ( f Ke

′∗)
for any c

′

∈ B
′

,∃l ∈ K,λ ∈ F such that
c
′

= λb + τ( f le
′∗)

for all y ∈ K, we have
c
′

yc
′

= (λb + τ( f le
′∗))y(λb + τ( f le

′∗))
= λ2byb + λbyτ( f le

′∗) + λτ( f le
′∗)yb + τ( f le

′∗)y( f le
′∗)

= λ2byb + λ(by)τ( f le
′∗) + λτ( f le

′∗)(by)∗ + τ( f le
′∗)yτ( f le

′∗)
By Lemma 3.4 (3),
= λ2byb + λτ(by f le

′∗) + λτ( f le
′∗(by)∗) + τ( f le

′∗y f le
′∗)

− f le
′∗y( f le

′∗)∗ − ( f le
′∗)∗y f le

′∗

= λ2byb + λτ(by f le
′∗) + λτ( f le

′∗yb) + τ( f le
′∗y f le

′∗)
− f le

′∗ye
′

l∗ f ∗ − e
′

l∗ f ∗y f le
′∗

Since f K f ∗ = f ∗K f = 0

c
′

yc
′

= λ2byb + λτ(by f le
′∗) + λτ( f le

′∗yb) + τ( f le
′∗y f le

′∗) (3.22)

we need to calculate each term
Since bKb = Fb, so

byb = αb (3.23)

τ(by f le
′∗) = τ(bye f le

′∗) = τ(bybx f le
′∗) = τ(αbx f le

′∗)

= τ(α(e f le
′∗) = ατ(e f le

′∗) (3.24)

For the third one we have
f le

′∗yb = e f le
′∗yb = bx f le

′∗yb ∈ bAb
Since τ(a) ∈ L for any a ∈ A, so τ(x f le

′∗y) ∈ K,then bτ(x f le
′∗y)b ∈ bKb ⊆ B

By Lemma 3.5 (3),

τ( f le
′∗yb) = τ(bx f le

′∗yb) = bτ(x f le
′∗y)b = βb (3.25)

Lastly, we have
f le

′∗y f le
′∗ = f le

′∗ye f le
′∗ = f le

′∗ybx f le
′∗

= ( f le
′∗)yb(x f le

′∗)
Since f ∗L f = 0, so bye

′

l f ∗x f le
′∗ = 0. Then

( f le
′∗)y(e f le

′∗) = f le
′∗ybx f le

′∗ − bye
′

l f ∗x f le
′∗

= ( f le
′∗yb − ( f le

′∗yb)∗)x f le
′∗

33



Falah Saad Kareem et al. , Wasit Journal of Computer and Mathematics Science, Vol. 1 No. 2 (2022) p. 23-34

= τ( f le
′∗yb)x f le

′∗ = βb(x f le
′∗)

=⇒ τ( f le
′∗y f le

′∗) = βτ( f le
′∗)

Substituting equation 3.23, 3.24, 3.25 and 3.26 in equation 3.22. We get that
c
′

yc
′

= (λ2α)b + (αλ)τ(e f le
′∗) + (λβ)b + βτ( f le

′∗)
= (λ2α + λβ)b + (αλ + β)τ( f le

′∗)
= (λα + β)(λb + τ( f le

′∗))
c
′

yc
′

= (λα + β)c
′

Therefore, c
′

Kc
′

= Fc
′

B
′

is point space and B ⊆ B
′

but B is maximal. Therefore
B = B

′

B is a type one point space

4. CONCLUSION
Every Jordan-Lie inner ideals of the orthogonal Lie algebras is either B = eKe∗ or B is a type one point space. one can

find an idempotent e ∈ A such that this inner ideal can be written in the form eKe∗. We study the relationship between
these algebras and their corresponding Lie ones. Also study Jordan-Lie inner ideals of these Lie algebras. proved that
every Jordan-Lie inner ideal of the orthogonal Lie algebra of an associative algebra (finite dimensional) is generated by
an idempotent e ∈ A with the property e∗e = 0.
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