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ABSTRACT: Let A be an associative algebra over a field F' of any characteristic with involution * and let K =
skew(A) = {a € Ala* = —aj} be its corresponding sub-algebra under the Lie product [a, b] = ab — ba for all a, b € A.
If A = EndV for some finite dimensional vector space over F and = is an adjoint involution with a symmetric non-
alternating bilinear form on V, then * is said to be orthogonal. In this paper, Jordan-Lie inner ideals of the orthogonal
Lie algebras were defined, considered, studied, and classified. Some examples and results were provided. It is proved
that every Jordan-Lie inner ideals of the orthogonal Lie algebras is either B = eKe* or B is a type one point space.

Keywords: paper publishing, journals, styles, howto

1. INTRODUCTION

Let A be a finite dimensional associative algebra over a field F. Recall that A becomes a Lie algebra A™) under the
Lie bracket defined by (x,y] = xy — yx for all x,y € A. Suppose that A has an involution *. Recall that an involution
is a linear transformation * of an algebra A satisfying (a*)* = a and (ab)* = b*a* for all a,b € A. We denote by
K = skew(A) = (a* = —ala € A} to be the vector space of the skew symmetric elements of A. Recall that K is a Lie algebra
with the Lie bracket defined by (x,y] = xy — yx for all x,y € K. If the characteristic of F is non-equal 2, then K can be
represented in the form:

K = skew(A, x) = {a — a*|la € A}. (L.1)

Benkart was the first to introduce an inner ideal of a Lie algebra. She defined it as a subspace B of a Lie L such that the
space [B, [B, L]] is a subset of B [1]. She highlighted the relationship between inner ideals and an ad-nilpotent elements [2].
Recall that an adjoint map ad : L — gI(L) is a representation from a Lie L into its general linear algebra defined by
ad(l) = ad;, where ad; : L — L is a linear transformation defined by ad;(x) = [l, x] for all x € L. By restricting ad-
nilpotent elements, one can classify non-classical from classical simple Lie algebras over algebraically closed fields of
characteristic # 2, 3. Therefore, inner ideals play a role in classifying these algebras. Commutative inner ideals have
proved to be a useful tool for classifying both finite and infinite-dimensional simple Lie algebras. It is proved in [3] that
inner ideals play a role similar to one-sided ideal in associative algebras and can be used to construct Artinian structure
theory for Lie algebras. Inner ideals is an essential tool in the classification of Lie algebras. (see [4] and [3]). Inner ideals
of classical type Lie sub-algebras of associative(simple) rings were studied by Benkart and Fernandez Lopez (see [5]) .
Baranov and Shlaka [6] in 2019 classified Jordan-Lie inner ideals of the Lie sub-algebras of finite dimensional associative
algebras. An inner ideal B of A% or K® is said to be Jordan-Lie if B> = 0. In recent paper, Shlaka and Mousa [7], studied
Jordan-Lie inner ideals A% in the case when A is simple over an algebraically closed fields of positive characteristic.
Jordan-Lie inner ideals of the Lie algebras K® in the case when A is simple with the symplectic involution over an
algebraically closed fields of positive characteristic were also been studied by Kareem and Shlaka in [8].
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In this paper, we study inner ideals of the orthogonal Lie algebras. We start with some preliminaries in section 2.
Section 3 is devoted to proof some results about Jordan-Lie inner ideals of the orthogonal Lie algebras and point space.

2. PRELIMINARIES

Throughout this paper, F is a field (algebraically closed), p > 0 is the characteristic of F, V is a vector space (finite
dimensional over F), End(V) is the endomorphism algebra, so(V) is the orthogonal Lie algebra, A is an associative
algebra (finite dimensional over F) with an involution *, K = skew(A, ) is the Lie subalgebra of A defined as (1.1), L is
a Lie algebra (finite dimensional over F), M, (F) is the matrix algebra consisting of all n X n-matrices and so,(F) is the
orthogonal Lie algebra of matrix .

Recall that an involution * of A is a linear transformation of A such that (¢*)* = a and (ab)* = b*a* for any a, b € A [9].
Note that = does not required to be F-linear. On the other hand, it is obvious that = maps the center Z into it self. Since
the restriction of * over F is an automorphism of order less than or equal to 2, it maps every sub-field of Z into itself.
Therefore F* = F. Here we have two possibilities which are either * is F-linear or not. Thus, we have the following
definition.

Definition 2.1 [13, 7.2] An involution is said to be of the first kind in case that * is F-linear, that is the restriction of =
relative to F is the identity. Otherwise, it is called of the second kind.

Remark 2.2 In this paper, we consider involution of the first kind only.

Definition 2.3 Let B be a subspace of L. Then B is said to be

1. [1] An inner ideal if (B, (B, L]] C B.

2. [1] A commutative inner ideal if B is an inner ideal such that [B, B] = 0.

3. [6] A Jordan-Lie inner ideal (or simply, J-Lie) if L = skew(A) and B is an inner ideal such that B> = 0.

Example 2.4 Consider the associative algebra A = M, (F). Then {e;;|1 < i, j < n} form a basis of A consisting of matrix
units, where e;; is the n X n-matrix with the entry 1 in the i jth position and zero elsewhere. Thus, the Lie algebra

K = skew(A) = 50,,(F) has the following basis {a;;, b;;, ¢;j|1 < i, j < n}, where
ajj = (€ij = entjnti)s bij=(einsj—ejnsi) and cij = (ntij — €niji)-

Then B = Fay, is J-Lie of skew(A, *). Indeed, for any x,y € B, we have x = aappy = a(ein — €440041), ¥ = Paiy =
Bleis — enyapnt1). Since

xy = alen — eopriBlers — eniapns1 =0,

B? = 0. It remain to show that [x, [y, []] € Bforeach! € K.
Letl= szzlé’,'ja,’j + sz‘zlnijbi,nJrj + sz:lyijc[j € K. Then

n n n
xly = a(ern — €n+2,n+1)(Z§ijaij + ijsz + Z%‘jcij)y

i,j=1 i,j=1 i,j=1

n

= aZ(§2jelj +1M2j€10tj — Njpp€lnsj + {j1€nt204j = V1j€ns2,j + Vil€ns2,j)y
Jj=1

= af({r1€12 — M22€1 001 — N22€1041 — 21€n12.041 — V11€n422 + V11€4122)

= afri(e12 — ensa 1) = Blr1a12 € Fayn = B.
and

n n n
yix = (e - €n+2,n+1)(Z§ijaij + Zﬂijbij + Z%‘jcij)x

ij=1 ij=1 ij=1

n

= ,32(52]‘61,‘ + 1M1 ) — Njpp€lnsj + {j1€nsanej = V1j€n+2,j + Vil€ns2,j)X
J=1
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= aff({r1€12 — M22€1 001 — M22€10t1 — 21€n12.041 — V11€n+22 + V11€4122)

= aflr1(e1r — enran1) = @fr1a12 € Fapp = B.
Therefore, [x, [y, []] = xyl — xly — ylx + lyx = —xly — ylx € B, as required.
Definition 2.5 [10] A subspace P of L is said to be point space if (P, P] = 0 and adﬁ(L) = Fx for every non zero element
x € P.
Example 2.6 Let K = 502,+1(F), If n = 1, then
0 aq (0%)
K =s03(F)=span{] —a» a3 O }Ial,az,ag € F}
—Q 0 —Q3
has a basis are
0O 1 0 0 0 1 0 0 O
{by=1 0 0 O ,bzz[ -1 0 O ,b3=[0 1 0 ]}
-1 0 O 0 0 O 0 0 -1
Then , we need to show that by, is a point space. For x € Fb; we have
0 { 0 0 [07] (0%)
xz[ 0 0 O]forsomeg’eF.Letlz —a; a3 O ]es03(F).
—é’ 0 0 -] 0 —Q3
Then, ad)%(L) =(x, (x,1]]

—{ay  {as 0 ~la, 0 O
=[x]| 0 0 0 |- 0 —Zan O[]
0 —doy ~da oz —fay O

0 ¢ 0 0 ‘oz O
=[[ 0 0 0],[ 0 (o O ]]
- 00 oz 0 —fa

0

0 oy O 0 0 0 a0
=lo o o]-| o 0 o= o 0 o0 |eFb

0 —4203 0 {ZClz —4203 0 —52(12 0 0

Therefore, Fb, and also Fb; is a point space. while Fb, is not point space.

We will need the following lemma. For the proof see [11].

Lemma2.7 [11] Let B be an I-ideal of L. If B> = 0, then

(1) bylby + bylby € Bforall by,b, e Band !/ € L.

(2)blb e Bforallbe Band [l € L.
Definition 2.8 [9] Let ¢ : V X V — F be a nondegenerate symmetric bilinear form. For each x € EndV define x* by
the following property ¢ (x*(v), w) = ¢ (v, x(w)) for all v,w € V. Then the map * : EndV — EndV is an involution of the
algebra EndV, called the adjoint involution with respect to .
Theorem 2.9 [10, Ch.1, introduction ] The map ¢ — * induced one to one correspondence between equivalence classes
of nondegenerate bilinear forms on V modulo multiplication by a factor in F* and involution (of first kind) on EndV.
Definition 2.10 [9] Let * be an involution of EndV. We say that = is orthogonal if it is adjoint to a symmetric non-
alternating bilinear form on V.
Definition 2.11 [2] Let A be an associative algebra with involution * over a field Fand let a € A. Then we define the trace
ofabyt(a)=a-a".

3. JORDAN LIE INNER IDEAL OF THE ORTHOGONAL LIE ALGEBRAS

Theorem 3.1 Suppose that A is simple with involution and p # 2. Let x € skew(A, ). Then x = xyx for some y €
skew(A, ).
Proof. We have x* = —x. Since A is V-Neumann algebra, x = xax for some a € A. Puty = %(a —a*) € skew(A, *). Then
Xyx = %x(a —a‘)x = %(xax —xa*x) = %(x — (xax)*) = %(x -x") = %(Zx) =X
Lemma 3.2 Let eKe* C B be a subspace of K = skew(A, ) such that e € BK and e* € KB. If ¢ be an idempotent in A
such that ee’ = ¢'e = 0, then ¢ B¢~ C B.
Proof. If ¢ Be'* = 0. Then ¢ Be'* C B. Suppose now that ¢ Be'* # 0. Then Ja € B such that ¢’ ae’™* # 0.
eae* = (1 —ea(l —e*) = a— (ea + ae*) + eae*
As e € BK, db, € B and k| € K such that e = b k. This implies that
e* = (bik))" = ki"b* = kb,
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We have a € B and eae* € eKe* C B. By Lemma 2.7,
ea+ae* = bikia+ akb; € B

Therefore, ¢ ae’™ € B, as required.

Recall that A is simple, so A can be identified with End(V) for some vector space V. We have the following proposition.
Proposition 3.3 Let ¢ : V x V — F be a non-singular form and let * be an adjoint involution of A = End(V). Let e, ¢ be
idempotent in A such that ee’ = ¢'e = 0. Suppose that eKe* # 0. Then the following hold

For each k € K such that eke* # 0, we have

(De=k+eke*+0.

(2)€Ke* =0.

(3) eKe'™* = 0.

Proof. (1) Let v € V such that ¥(v,eke*(v)) # 0. Such v exists because ¢ is non-singular. We need to show that
Y(e*(v), ce*(v) # 0. Since ee’ = 0,
Yle*(v), ce"(v)) %*w(v, ece*(v))
=y, ek +e ke )e*(v))
=y, eke*(v)) + ¥(v, ee' ke e* (v))
=y, eke*(v)) # 0.
(2) Let w € € Ke*. Then there is k € K such that w = ¢ ke*. For each v € V we have
Y(e'(v), we* (V) = Y(v, ewe*(v)) = (v, e€ ke*e*(v)) = Y(»,0) = 0,
sow=eKe* =0.
(3) Let h € eKe'*. Then there is k € K such that & = eke*. For each v € V we have
Yle"(v), he™(v)) = (v, ehe(v)) = Y (v, e(eke*)e*(v) = (v, 0) = 0.

Therefore, h = eke * = 0.

The idea of the following lemma comes from McCrimmon’s paper [2].

Lemma 3.4 Let A be an associative algebra with involution = over a field F. Suppose that L = skew (A, *). Then the trace
7 that defined above by 7 (a) = a — a* has the following properties:

(1) 7 is linear.

(2) 7(x) € Lforany x € L.

(3) xt(a) x = 7 (xax) For any a € A and x € L.

@) ar(b) + 1 (b)a* = t(ab) + 7 (ba*) For any a,b € A.

S) t(a) xt(a) = T (axa) —axa® —a*xa Forany a € A and x € L.

Proof. (1) Suppose that a,b € A and a € F. Then
T(wa) =aa— (@a)" =a(a—a*) =ar(a);

Ta+b)=(@@+b)—-(a+b)=(@a@-a)+b-b)=1(a)+7(b).

Thus, 7 is linear.
(2) Let a € A Then
t@)Y'=@—ax)" =a" —a=-(a-a") =-7(a).
Therefore, 7 (a) € L.
(3) Leta € A and x € L Then we have
xt(a)x = x(a—a*) x = xax — xa*x = xax — (x*ax*)" = v (xax).
(4) Leta,b € A Then

atr(B)+1t(b)a*  =ab-b")+b—-b")a" =ab—ab* + ba* — b*a*

= (ab—-b*a*) + (ba" — ab")
= (ab — (ab)*) + (ba* — (ba*)*) = 7 (ab) + T (ba™)
(5) For any a € A and x € L we have
T(@)xt(a)=(a—a*)x(a—-a*) =axa+a'xa* —axa* —a*xa
= (axa — (axa)") — axa* — a*xa = 7 (axa) — axa® — a*xa.
Lemma 3.5 Suppose that p # 2,3 and K = skew (EndV, *). Then the following hold:
(1) If ¢ (Kv,w) = 0 for some nonzero vectors v,w € V, then w € Fv. Consequently Kv = v* for any nonzero vector
vev.
(2) If U is a subspace such that dimU > 1, then KU = V.
(3) A transformation x € K satisfies xKx* = 0 if and only if rank (x) < 1.
Proof. (1) Suppose that v,w € V be nonzero vectors such that ¥ (Kv,w) = 0. For the contrary we assume that w ¢ Kv.
Then we could find a linear transformation a € A such that a (w) = 0 and ¢ (a (v) ,w) # 0. Note that a — a* € K. Thus,
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0y @), w)=y@@®@),w)-0=y @@ ,w) -y v,aw)
=ya@),w) =y @ w,w)=y{(a-a)),w) =0,

a contradiction Therefore w € Kv Consequently, for any nonzero vector v we have v+ = Kv

(2) Suppose that U be a subspace of V such that dimU > 1 Then
KU = YevKw = Zyepw' =V

That is, any w*has co-dimensional 1. Thus, if w{" = wy. Then w; € Kw,. Hence any two independent vectors w;- will

span all V.
(3) If x*Kx = 0 Then
0=y Kx(v),v) =y (Kx(v),x(v)) forall veV.
This implies K (x (V)) # V, so by (2), we get that dim (x (V)) < 1.

Theorem 3.6 Let ¢, ¢, f be an idempotent in A = EndV such that e’ = ¢'e = 0 and e*e = 0. Let ¢*f = fe* = 0 and

e’ f=fe' = fIf B=eKe* then Bisa J-Lie.
Proof. Let w = eke™* # 0, by Theorem 3.1, w = wz w for some z € K.
putz = ¢*z e. Then
wzw = w(e*Z e)w = eke ez eeke™ = eke*7 eke™ = wzw
Let f = zw = (¢*Z e)(eke™*) = €z eke’*. Then
ef=ee*7eke* =0
and
fe* = e*7 eke*e* = (1 — e")7 ek(l — e*)e* =0
e f=e*e*7eke”* = e 7 eke” = f
Also
fer=e*7eke e = f
By Lemma 3.5 (3), since rank(f) = 1, so rank(f*) = 1. Therefore,
fKf = (e*7 eke*)* K(e*7 eke™) = € k*e*7*¢ Ke'*7 eke™* = 0
and
fKf* =e*7 eke*Ke'k*e*7 ¢ =0
Moreover, for any u € Ker(w), f(u) = zw(u) =0
Therefore, Ker(w) C Ker(f), both have co-dimension. Then

Ker(w) = Ker(f) = Ker(w/)

Recall f = zw is idempotent of rank 1. Let ¢ € Im(w’) such that ¢ ¢ Ker(w'). Then w' f(c) # 0

(fw f(c) = 0, then either ¢ € Ker(f) orc € Ker(w') this is a contradiction)
If w f(c) # 0, then ¢ € Im(w' f). Since ¢ € Im(w'), so ¢ € Im(w' f)
Therefore, Im(w') € Im(w’ f). both have co-dimension, so
Im(w") = Im(w' f)
Since Ker(f) = Ker(w'), so
Ker(w' f) = Ker(w')
Therefore, w f = w' for any w' € eBe'*.
Next, we claim that
B C B = eKe* + t(ekf),
for any d € B we have
d = ede* + ede”* + €'de* + €' de”™*

= ede* + ede™ — (ede™)*

= ede* + t(ede™)

= ede* + (W)

Since w'(f) =w € eBe'*, we have that
K = eke* + T(w'f) =ede* + T(ede'*f)
Ase*f = f,so
K = eke* + 1(edf) € eKe* + 1(eKf)
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put B = eKe* + (eK f). Then
(e+ fHK(e+ f*) =(e+ fHK(e" + f)

=eKe" +eKf + fKe* + f*Kf

=eKe" + eKf — (eKf)*

=eKe" + 1(eKf)

Letg =e+ f*, then
g2 =(e+ e*7 eke™)(e + €7 eke™)
—e+eZeke =g

and g*g = ge*r+ f/)(e +f*? .

=(e"+e'zeke*)e+eke'z7e)=0

Now, let gk, g*, gk,g" € gKg and [ € K. Then

[gkig", [gkag™, 1] = [gk1&", gkag"l — Ighkag"]
= gki18"gkag"l — gkag"Igk1 8" — gk1g"Igkag" + Igkag"gk1g"
= —2gkig"lgkrg" = g(=2k18"Igk2)g" € gKg”

Therefore, B = gKg" is an I-ideal of Kand B is J-Lie of K. as required.
Theorem 3.7 Let ¢, ¢, f be an idempotent in EndV such that e’ = ¢'e = 0. Let B be a J-Lie of K = skew(A, ) such that
bKb +# Fb for all b € B. Then the following hold

1. E(V = eKe*K(vj forallvg € V

2. EBe*(V = e(V)

Proof. (1) Suppose that bKb # Fb. We have BC B = (e + f*)K(e + f*)*
By Lemma 3.5 (1), we have Kvg = v;. Thus eKe*K(v) = eKe*(vy)
Suppose that dim(e*(vy)) = 1.

If dim(e*(vé)) > 1, then by Lemma 3.5 (2),

Ke*'(vy) =V = eKe*(vy) = e(V)
Therefore, e(V) = eKe*(vy).
and if dim(e*(vy)) = 1, then there exist a non-zero uy € V such that

e*(vy) = Fuy. (3.2)

Then
eKe*(vy) = eK(up) = e(uy)
for all u € ug, we have e(u) € (vy)* = Fvo, because
e(u) € e(uy) = eKe*(vy) € B(vy) € K(vy) = (vg)* = Fw,
)
uy = e (V) + Fyg
Thus,

eKe' (up) = e(ug) = e(e' (V) + Fvg) = Fy. (3.3)
But for any non-zero r € ug and a € F, we have ¢*(r) = aug
ae’(ug) = e*(aug) = e*(e*(r)) = " (r) = auy.

so e*(up) = up. Thus, for any y = ey e* € eKe*, we can assume that y(u) = 0
Let y(V) € uy, by equation (3.3),

Y(V) = ey e'(V) = e(ey €' (V) = e(y(V)) € e(uy) = Fvg

By Lemma 3.5 (3), if y has rank 1, then y*"Ky = yKy = 0.
By Theorem 3.1, 40 # [ € K such that y = yly € yKy = 0.
Then, y € eKe* C B. Therefore y € Fb, but eKe* = bKb
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soy € bKb. Thus, if bKb # Fb, then eKe*K(vy) = e(V), as required.
(2) for any 1,1*’\in K, we have ele*\ast\in eKe"\ast\subseteq B
Let b’ = —[ele*,[b’,I1] € [B,[B,K]] C B
b’ € Bisthe same b that satisfies w = eb e # 0. Since
b" = —[ele*,[b,[1] = ~[ele*,b'[ —[D']
= —(ele*b'l —b'lele* —ele*lb + [ ele*)
eb’ e = —e(ele*b' | —b'lele* —ele*lb + b ele*)e’*
= —cele*b [ e* + eb [ ele*e™* + eele* b e* — el b ele*e™
= —ele*b' [ e +ele*l b e
and ele*b'['¢* = bxlxbb' [ ¢* = 0. As (bb' = 0)
eb’ e =ele*lb e =ele*l (e +€)b e
=ele*leb e* + ele*l (¢'b e™)
By using equation , (¢'b'e™* = 0), we have eb”’¢* = ele*l (eb'e™).
Since w = eb' ¢, so eb” ¢ = ele*[ w forany [,/ € K.
Letv € V. Then eb” e (v) = ele I w(v) = ele™*I (vy)
Since bKb # Fb, so we must have
eBe'*(V) = eKe*K(vp)
Since eKe*K(vg) = e(V), we get that
eBe* (V) = e(V)
as required.

Theorem 3.8 Let ¢, f be an idempotent in A = EndV and let B be a J—Lie of K = skew(A, *). Suppose that bKb = Fb

for all b € B.Then B is a type one point space.
Proof. Suppose that bKb = Fb. we are going to prove that B is a type one point space
Recall that B C B’ = eKe* + 1(eK f), so
B = eKe* + 1(eKf) = bxKxb + 1(eK f)

= bKb + 1(eKf)

Since bKb = Fb, so
B = Fb + 1(eKf)
for any ¢ € B, there exist 1 € F and / € K such that
c = Ab + 1(elf)
Then Yy € K, we have
cyc = (Ab + 1(elf))y(Ab + t(elf))
= 2byb + Abyt(elf) + At(elf)yb + 1(elf)yr(elf)
= Azbyb + A(by)t(elf) + At(elf)(by)* + t(elf)yt(elf)
By Lemma 3.4 (3),
cyc = A2byb + At(byelf) + At(elf(by)*)
+7(elfyelf) —elfy(elf)" — (elf)"yelf
A2byb + At(byelf) + At(elfyb) + t(elfyelf) — elfyfI*e* — f*I*e*yelf
Since fKf* = f*Kf = 0.

cyc = A2byb + At(byelf) + At(elfyb) + t(elfyelf)
we need to calculate each term. Since bKb = Fb, so
byb = ab
T(byelf) = T(bybxlf) = t(abxlf) = T(a(elf))
= at(elf)

for the third one we have
elfyb = bxlfyb € bAb
Since 7(a) € L for any a € A,7(elfyb) € K, then br(xlfy)b € bKb C B.
By Lemma 3.5 (3),

7(elfyb) = T(bxlfyb) = br(xlfy)b = b

34)

(3.5)

(3.6)

3.7

(3.8)
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for some 8 € F
for the four one we have
elfyelf = elfybxlf = (elf)yb(xlf) =0
Since f*Lf =0, so byf*le*xlf = 0. Then

(elf)y(elf) = elfybxlf — byf*le* xlf

= (elfyb — (el fyb)")xlf

= 1(elfyb)xlf

Bb(xLf) = Belf

t(elfyelf) = pr(elf) (3.9)
Substituting equation 3.6 , 3.7, 3.8 and 3.9 in 3.5, we get that

cyc = (/lza)b + (Aa)t(elf) + (AB)b + Br(elf)

= (Va + AB)b + (a + B)r(elf)

= (da + B)c

Therefore, cKc = Fc, B is a point space
since B is a maximal point space, so B = B’
Therefore, B is a type one point space.
Theorem 3.9 Suppose that A is simple with the orthogonal involution * defined on it. If p # 2,3 and A is of dimensional
greater than 16, Then every J—Lie B of (K, K] is of the form eKe* or B is a type one point space. where e is an idempotent
in A such that e*e = 0.
Proof. Let b € B, Then by Theorem 3.1, 3x € K such that b = bxb.
Let e = bx. Then e* = (bx)* = x*b* = xb, since B is J-Lie, b*> = 0, so e*e = xbbx =0 . By Lemma 3.2, bKb C B
Suppose that bKb C B is maximal with the property. Since
bKb = bxbKbxb C bxKxb = eKe",
eKe* = bxKxb C bKb,
We have

eKe* =bKbCB (3.10)

Next, we need to show that B C eKe*
Lete =1—eande” = (1 —e)* = 1 — ¢*, we have

b=1bl = (e + €)b(e* +€*) = ebe* + ebe™ + ¢ be* + ¢ be™* (3.11)

First, we need to show that ¢ Ke™* = 0
It remains to show that ¢ Ke* = 0. Assume to the contrary that ¢ Ke'* # 0. Then 3¢’ € K such that z = ¢'c’e’” # 0. By
Lemma3.2,¢ Ke CB,sozeB.Letc=b+ze B.In the view of Lemma 3.3(1), we have ¢ # 0
First, we claim that bKb C cKc. Since ¢ € B, by Lemma 2.7, cKc C B. Take any y € K. Then
ce*yec = (b + z)e*ye(b + z2)
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= be*yeb + be*yez + ze*yeb + ze*yez
Since ez = e(e'¢’¢*) = 0 and ze* = (¢'c e*)e* = 0,
ce*yec = be*yeb = bxbybxb = byb
so ce*Kec = bKb. As ce*Kec C cKc, we get that
bKb = ce*Kec C cKc (3.12)

Next, we need to show that zKz C cKc. Take any / € K, we have
ce’le'c=(b+2)e*le D +7)

=be*leb+be lez+ze*le'b + ze*le' 7 (3.13)

By computing mutually each term, we get that
be'*le'b = b(1 — e")I(1 — e)b = blb — bleb — be*lb + be*leb.

= blb — blbxb — bxblb + bxblbxb = blb — blb — blb + blb = 0 (3.14)

be'"le'z = b(1 = e")I(1 — e)z = blz — blez — be*lz + be*lez

= blz — bxblz = blz — blz =0 (3.15)
ze*le'b = z(1 — e*)I(1 — e)b = zlb — zleb — ze*Ib + ze*leb = zIb — zIb = 0 (3.16)
ze*le'z = z2(1 — eM)I(1 — )z = zlz — zlez — ze*lz + ze*lez = zlz 3B.17)

By substituting equation 3.14, 3.15, 3.16 and 3.17 in 3.13, we get that ce’ le ¢ = zlz. Since [ € K, by Lemma 3.2, ¢*le € K,
SO

7Kz = ce*Ke'c C cKe (3.18)

Recall that 7 = ¢'c’e™* € K. By Theorem 3.1, 3k € K such that z = zkz € zKz. By equation 3.18, we get that z € zKz C cKc.
But z ¢ bKb C cKc, a contradiction. Therefore,

eKe* =0 (3.19)

Therefore, ¢ be* = 0. Now we have to consider to two cases depending on eKe* whether it is zero or not
If eKe'™* = 0, then (¢ be*)* = eb*e* = —ebe' * € eKe'*
substituting in equation (3.11), we get that
b = ebe* + ebe'* — ebe’™ + ¢ be’*
= ebe* € eKe”
Therefore, B = eKe*.
Suppose now that eKe™* # 0. Then 3k € K such that w = eke™® # 0. Since
w*Kw = (eke*) K(eke'™®)
=e'k'e*Keke™ C ¢ Ke™ =0,
By Lemma 3.5 (3), rank w < 1, so rank(w) = 0 or rank(w) = 1. Thus, rank(w) = 1 (because w # 0).
Hence, dimw(V) must be one, fix any vy € V such that w(V) = Fvy.
Let v € V such that

w(v) = vg. (3.20)

V = Im(w) + Ker(w)
= Fv + Ker(w)
Let w = ele™* € eBe™* be a non-zero transformation. Then
0 = e ((e*Ke)k + k(e* Ke)l)e'*
= e l(e*Ke)ke™ + € k(e*Ke)le'*
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= (¢ le*)K (eke'™*) + (¢ ke*)K (ele™)
=w* Kw+w'Kw
If u € Ker(w), then
0=yO0W),u) = l//((W/*KW + W Kw)(v), u)
= w(w'*Kw(v), u) + lﬁ(W*KWI(V), u)
= Y(Kw), w () + Y(Kw (v), w(u))
Since u € Ker(w), so w(u) = 0.
= Y(Kw(v), w'(u)) , / /
By Lemma 3.5 (1), w («) € Fvy. Now either w (1) = 0 or w (u) # 0 for all u € Ker(w)
If w' () = 0 for all u € Ker(w), then Ker(w) C Ker(w)
But dim(w(v)) = dim(w (v)) = 1, so Ker(w) = Ker(w')
Suppose now that w'(u) # 0 for some u € Ker(w), then Im(w') = Fvy C Im(w).
Since both have dimension 1, so Im(w') = Im(w) = Fv,.
Then by Theorem 3.6, B’ is a J—Lie.
Now, we need to show that B = B, by Theorem 3.7,
e(V) = eKe*K(vy)
and

eBe' (V) = e(V) (3.21)

we claim that eB ¢*(V) C eBe'*
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we have B' = eKe* + 1(eKf)
eBe* = e(eKe* + T(er))e/*
= eKe*e* + eKfe™ — (eKf)'e™*
=eKfe* — f*Ke'e™ = eKfe™*
Since e*¢* = 0. Recall that fe'* = f,
eB'¢* = eBf
Letelf e eKf
elf(v) = elzw(v) = elz(vg) € eKK(vp) = eK(vé) =e(vy) € e(V)
because (w(v) = vp). By equation (3.21), e(V) = eBe™*
elf(v) € eBe*(V). Therefore Iw’ € eBe'* such that elf(v) = w'(v).
Since V = Fvy + Ker(w) and Ker(f) = Ker(w) = Ker(w') fore equation (3.1), and w’ € eBe™*,
for any elf € eKf = eB e, there exist w € eBe™* such that elf = w' € eBe'*
Then eB'¢™ C eBe'™* and B' C B. Therefore B = B.
There exist idempotent (e + f*) such that B = (e + f*)K(e + f*)".
Now, when bKb = Fb, by Theorem 3.8, B' = B is a type one point space.
Suppose that Im(w') = Im(w) = Fv, for any w' € eBe'*, we need to show that B is a type one point space
Recall that wzw = w,z = ¢ *Z e

Let

f=wz=ebe*Ze
Then

fe =ebe*Ze(l1—e)=0
and

e’f =(l-e)ebe*z7e=0
2=(ebe*Ze)eb e Ze)=ebeTe=f

ef =eebe*7e=ebe*7e=fand fe=eb e Zee=f
Since rank(f) = 1, so rank(f*) = 1
Recall that f*K f = fKf* = 0. we have Im(w) = Im(f)
for any w € eBe'*, we have Im(w) = Im(f) = Im(w')
we have going to prove that there exist point space B = eKe* + 7(fKe'*) such that B = B’
First, we claim that fw" = w’ for any w' € eBe'*
Let u € Ker(w), then fw' (1) = 0
so Ker(w') C Ker(f(w)), therefore Ker(w') = Ker(f(w')) ( co-dimension 1)
Since Im(w') = Im(fw’), so fw =w' forany w' € eBe™*.
Second, we claim that

BCB =eKe' + T(fKe’*)
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take K € B, then
K = eKe* + eKe* + ¢ Ke* + ¢ Ke'™*
K = eKe* + 1(eKe'™®)
K =eKe* + (w)
Since fw' =w, so
K = eKe* + T(feKel*)
because fe = f. For all K € B, we have
K = eKe* + 7(fKe'™)
BC B =eKe* +1(fKe™)
Now, we claim that B is a point space, that is bKb # Fb. Then
eKe*K(vy) C eKe'*(vo) C fKe™*(v) = Fvy
but
eKe*K(vy) = e(V) # Fyy
because ranke(V) > 1.
Finally, we claim that B = eKe* + 7(fKe'*) is point space
By using equation (3.4), and our assume that bKb = Fb, we have
B =eKe* + t(fKe'™)
= bxKxb + 17(fKe™)
= bKb + t(fKe™) = Fb + t(fKe'™)
for any ¢ € B,3l € K,A € F such that
¢ =b+ T(fle'*)
for all y € K, we have
c’yc' =(b+ T(fle'*))y(/lb + T(fle'*))
= 22byb + Abyt(fle™*) + At(fle)yb + t(fle™*)y(fle™)
= 22byb + Aby)t(fle™) + At(fle™*)(by)* + t(fle)yr(fle™)
By Lemma 3.4 (3),
= 22byb + At(byfle™) + At(fle*(by)") + T(fle*y fle™)
—fle*y(fle*)" = (fle*)yfle”
= 22byb + At(byfle™*) + At(fle*yb) + t(fle*yfle™)
—fle"ye' I f* — e'I' fryfle’™
Since fKf* = f*Kf =0

cyc' = Bbyb + dr(byfle™*) + At(fle*yb) + t(fle*yfle™)

we need to calculate each term
Since bKb = Fb, so

byb = ab
T(byfle'*) = T(byefle'*) = T(bybxfle'*) = T(abxﬂe[*)
= (alefle™) = at(efle™)

For the third one we have
fle*yb = efle”*yb = bxfle*yb € bAb
Since 7(a) € L for any a € A, so t(xfle™*y) € K,then br(xfle*y)b € bKb C B
By Lemma 3.5 (3),

7(fle*yb) = 1(bxfle*yb) = br(xfle™*y)b = Bb

Lastly, we have
fle*yfle™ = fle*yefle™ = fle*ybxfle'™*
= (fle™)yb(xfle™) ’ ’
Since f*Lf =0, so bye [f*xfle* = 0. Then
(fle™)y(efle™) = fle*ybxfle™ — bye Lf*xfle™*
= (fle"yb — (fl¢ *yb) )xfle”

(3.22)

(3.23)

(3.24)

(3.25)
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= 1(fle*yb)xfle™ = Bb(xfle™*)
= 1(fle*yfle™) = Br(fle™)

Substituting equation 3.23, 3.24, 3.25 and 3.26 in equation 3.22. We get that

c’yc’ = (La)b + (a/l)‘r(efle'*) + (A48)b + ,BT(fle’*)
= (Pa+ AB)b + (ad + B)r(fle™)
= (Aa + B)(Ab + 1(fle™))
cyc = Qa +p)c

Therefore, ¢ K¢ = Fc'

B’ is point space and B C B’ but B is maximal. Therefore
B=B

B is a type one point space

4. CONCLUSION

Every Jordan-Lie inner ideals of the orthogonal Lie algebras is either B = eKe* or B is a type one point space. one can
find an idempotent e € A such that this inner ideal can be written in the form eKe*. We study the relationship between
these algebras and their corresponding Lie ones. Also study Jordan-Lie inner ideals of these Lie algebras. proved that
every Jordan-Lie inner ideal of the orthogonal Lie algebra of an associative algebra (finite dimensional) is generated by
an idempotent ¢ € A with the property e*e = 0.
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