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ABSTRACT: The goal of this study is to investigate the effect of couple stress on Powell-Eyring fluid peristaltic
transport in an inclined asymmetric channel using porous medium. Peristaltic motion of a magnetohydrodynamic
Powell-Eyring fluid in inclined asymmetric channel with porous medium, medium is investigated in the present
study. The modeling of mathematic is created in the presence of effect of couple stress, using constitutive equations
following the Powell-Eyring fluid model. In flow analysis, assumptions such as long wave length approximation
and low Reynolds number are utilized. Closed form formulas for the stream function and mechanical efficiency are
created. On the channel walls, pressure rise per wave length has been calculated numerically. The effects of the
Hartman number (Ha), Darcy number (Da), material fluid parameter (w), inclination of magnetic field (β), amplitude
ratio (∅), The effects of the Couple Stress on axial velocity and entrapment are investigated in detail and graphically
shown.

Keywords: Couple Stress, PowellEyring Fluid, Porous Medium

1. INTRODUCTION
The peristaltic motion is a series of contractions and diastoles that push fluid along the path, making it easier to

move. Peristalsis is a natural property of smooth muscles and tubes that carry fluid through vessels as a result of motor
activity in numerous biological systems, the passage of urine from the kidney to the bladder, the movement of food
through the gastrointestinal tract, and the migration of eggs through the fallopian tube are all examples of this movement .
M [1]any researchers study peristaltic transport with heat transfer (with or without porous medium) in a range of subjects
and applications, including:, [2] in [3]vestigated the combined influence of velocity slip, temperature, and density jump
conditions on MHD peristaltic transport of a Carreau fluid in a non-uniform channel , t [4]o investigate the impact of
Heat generation on MHD peristaltic flow in a nanofluid with compliant walls. Pair fluid behavior studies are essential for
understanding a range of physical issues, and they can better describe the behavior of rheologic ally complicated fluids
including liquid crystals, polymeric suspensions with long chain molecules, lubrication, and human/sub-human blood.
A couple-stress fluid is a non-Newtonian fluid with specified particle sizes. In classical continuum theory, the effects of
particle sizes are not examined. Peristaltic transmission of couple-stress fluid has been studied recently [5–8]. Despite
the fact that there is always some slide in real systems, several of the experiments on couple-stress fluids defined above
employed blood as a couple stress fluid and were carried out under no slip conditions. Peristalsis is a natural property of
smooth muscles and tubes that carry fluid through vessels as a result of motor activity in numerous biological systems. The
governing equations for continuity and motion have been constructed, and analytic solutions have been performed using
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the assumptions of a long wave-length and a low Reynolds number. The effect of emerging parameters on the velocity and
pressure could be studied and the phenomenon of trapping also discussable.

2. MATHEMATICAL FORMULATION FOR ASYMMETRIC FLOW
Consider the flow of an incompressible "Powell-Eyring fluid" in a two-dimensional asymmetric channel of width (d +

d’). The flow is caused by an infinite sinusoidal wave line moving forward and with constant velocity c along the channel’s
walls . An asymmetric channel is formed by varying wave amplitudes, phase angles, and channel widths.

The walls geometries get modeled as

h1(x, t) = d − a1 sin
[
2π
λ

(x − c)
]

upper wall (1)

h2(x, t) = −d′ − a2 sin
[
2π
λ

(x − ct) + ∅

]
lower wall (2)

Where (a1), (a2),(d),(d’), (c ) , (t) are the wave amplitudes, channel width, wavelength, and wave speed, (0 ≤ ∅. ≤ π)
is the phase difference and thus the rectangular coordinate system gets chosen with the ( X. -axis ) parallel to the wave
propagation direction and the ( Y .-.axis ) perpendicular to the wave propagation direction. It’s worth noting that (∅=0)
corresponds to a symmetric channel with out of phase waves, whereas( ∅=) corresponds to a symmetric channel with
in phase waves. (a1), (a.2), (d.), (d’) and (∅) also meet the following criteria ."It is noticed that (∅=0) corresponds to
symmetric channel with waves out of phase and for (∅=) the waves are in phase". Further (a1), (a2) , (d), (d

′

) and (∅)
satisfy the condition":

a2
1 + .a2

2 + 2a.1.a.2coso(∅) ≤ (d4 + d
′

)2.

FIGURE 1. Cartesian Dimensional Inclined Asymmetric Channels Coordinates.

It’s also assumed that there’s no longitudinal movement of the walls. This assumption limits wall deformation but does
not imply that the channel is stiff for longitudinal motions.

3. BASIC EQUATION
The fluid follows the Powell Erring model, and the Cauchy stress tensor,. of it is as follows: [9] .

τ̄ = −PI + S, (3)

S̄ =

[
µ +

1
βγ̇

sinh−1
(
γ̇

c1

)]
A11, (4)

γ̇ =

√
1
2

tras(A11)2 (5)

A11 = ∇
−

V + (∇
−

V)
T

(6)
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Where
(
−

S
)
expresses the extra tensor’s stress, I the identity tensor,

−

∇ =(∂
−

X , ∂
−

Y , 0) the gradient vector, (β,c1) the Powell-

Eyring fluid’s martial characteristics, (
−

P) the fluid’s pressure, and (µ) the dynamic viscosity.
The terms sinh−1 is approximated as

sinh−1
(
γ̇

c1

)
=
γ̇

c1
−

γ̇3

6c1
3 ,

∣∣∣∣∣∣ γ̇5

c1
5

∣∣∣∣∣∣ � 1 (7)

−
s−

x
−
x

= 2( µ +
1
β c1

)
−
u−

x
−

1
3 β c1

3 [2
−
u−

x

2
+

(
−
v−

x
+
−
u−

y

)2
+ 2

−
v

2
−
y
]
−
u−

x
(8)

sxy =

(
µ +

1
βc1

) (
vx + uy

)
−

1
6βc1

3

[
2ux

2 +
(
vx + uy

)2
+ 2v2

y

] (
vx + uy

)
, (9)

And s̄yy = 2
(
µ +

1
βc1

)
v̄ȳ −

1
3βc1

3

[
2ū2

x̄ +
(
v̄x̄ + ūȳ

)2
+ 2v̄2

]
v̄ȳ. (10)

4. THE GOVERNING EQUATION

With in laboratory frame (
−
x , ,

−
y ) , the governing equations inside an inclined channel with inclined magnetic field on

Powel-Eyring fluid can be written as the continuous equation:

∂
−
u

∂
−
x

+
∂
−
v

∂
−
y

= 0 (11)

The
−
x – component of moment equation :

ρ

 ∂ −u
∂
−

t
+
−
u
∂
−
u

∂
−
x

+
−
v
∂
−
u

∂
−
y

 = −
∂
−
p

∂
−
x

+
∂

∂
−
x

−
s−

x
−
x

+
∂

∂
−
y

−
s−

x
−
y
− σβ0

2cosβ
(
−
u cosβ −

−
v sinβ

)
−
µ
−

k

−
u − µ1 ∇

4 −u + ρ g sin α∗ (12)

The
−
y – component of moment equation :

ρ

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂ȳ

)
= −

∂p
∂y

+
∂

∂x
s̄xȳ +

∂

∂y
s̄yy − σβ

2
0 sin β(u cos β − v sin β)−

µ

k
v − µ1∇

4v − ρg cosα∗.
(13)

Let ∇2 =

(
∂2

∂
−
x

2 + ∂2

∂
−
y

2

)
then ∇4 =

(
∇2

)2

where the (ρ) , (
−
u) , (

−
v) , (

−
y ), (

−
p) , (µ ), (

−

k ) , (B0) are" the fluid density ,axial velocity , transverse velocity,
transverse coordinate , pressure, viscosity , material constant, permeability parameter, constant magnetic field, is the
electrical conductivity.

This flow is unsteady with in laboratory frame (
−
x ,
−
y ), whereas the motion is steady inside a coordinate system flowing

there at wave speed (c) in the wave framer (
−
x ,
−
y ).

5. DIMENSIONLESS PARAMETER
We setup the following non-dimensional quantities to perform the non-dimensional analysis:

x =
1
λ

x, y =
1
d

y, u =
1
c

u, v =
1
δc

v, p =
d2

λµc
p, t =

c
λ

t, h1 =
1
d

h1, h2 =
1
d

h2,

δ =
d
λ
, ∅ =

b
d
,Re =

ρcd
µ
,Ha = d

√
σ

µ
β0,Da =

k
d2 ,w =

1
µβc1

, A =
w
6

(
c

c1 d

)2

, α =

d
√

µ

µ1
,Fr =

c2

dg
, sxx =

λ

µc
sxx, sxy =

d
µc

sxy, syy =
d
µc

syy, β1 =
β∗

d

(14)
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where (δ) is the wave number, (Ha) is the Hartman number, (Da) Darcy number, (Re) is the Renold number, (Fr) Froude.
Number, (∅) is the amplitude ratio, (w) is the dimensionless permeability of the porous medium parameter, (w, A)
material fluid parameters, (α) couple stress, ( α∗) Inclination. angle of the channel. to the horizontal axis, (β1) represent
the dimensionless slip parameters.

Then, in view of Eq. (14), Eq. (1),(2),and (8) to (13) take the form :

hi1 (x, t) = 1 − asin.X (15)

h2(x, t) = −d∗ − b sin[X + ∅]. (16)

sxx = 2 (1 + w)
∂u
∂x
− 2A

2δ2
(
∂u
∂x

)2

+

(
δ2 ∂v

∂x
+
∂u
∂y

)2

+ 2δ2
(
∂v
∂y

)2 ∂u
∂x

(17)

sxy = (1 + w)
(
δ2 ∂v

∂x
+
∂u
∂y

)
− A

2δ2
(
∂u
∂x

)2

+

(
δ2 ∂v

∂x
+
∂u.
∂y

)2

+ 2δ2
(
∂v
∂y
.

)2 (δ2 ∂v
∂x

+
∂u.
∂y

)
(18)

syy = 2 (1 + w) δ
∂v
∂y
− 2Aδ

2δ2
(
∂u
∂x

)2

+

(
δ2 ∂v

∂x
+
∂u
∂y

)2

+ 2δ2
(
∂v
∂y

)2 ∂v
∂y

(19)

∂u.
∂x

+
∂v.
∂y

= 0 (20)

Reδ(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

) = −
∂p
∂x

+ δ2 ∂

∂x
sxx +

∂

∂y
sxy − Ha2cosiβ (ucosβ − δvsiniβ) −

1
Da

u −
1
α2(

δ4 ∂4

∂x4 + 2δ2 ∂4

∂x2∂y2 +
∂4

∂y4

)
u +

Re
Fr

sin α∗
(21)

Re δ3
(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −

∂p
∂y

+ δ2 ∂

∂x
sxy + δ

∂

∂y
syy + Ha2 sin β(δu cos β−

δ2v sin β
)
− δ2 1

Da
v −

1
α2 δ

2
(
δ4 ∂

4

∂x4 + 2δ2 ∂4

∂x2∂y2 +
∂4

∂y4

)
− δ

Re
Fr

cosα∗
(22)

The relations connect the stream function (.ψ.) to the velocity components.

u =
∂ψ

∂y
, v = −

∂ψ

∂x
(23)

Substituted Eqs.(23) in Eqs. (17 ) to Eqs. (22) respectively,

sxx = 2 (1 + w)
∂2ψ

∂x∂y
− 2A

2δ2
(
∂2ψ

∂x∂y

)2

+

(
−δ2 ∂

2ψ

∂x2 +
∂2ψ

∂y2

)2

+ 2δ2
(
−

∂2ψ

∂x∂y

)2 ∂2ψ

∂x∂y
(24)

sxy = (1 + w)
(
−δ2 ∂

2ψ

∂x2 +
∂2ψ

∂y2

)
− A

2δ2
(
∂2ψ

∂x∂y

)2

+

(
−δ2 ∂

2ψ

∂x2 +
∂2ψ

∂y2

)2

+ 2δ2
(
−

∂2ψ

∂x∂y

)2 (−δ2 ∂
2ψ

∂x2 +
∂2ψ

∂y2

)
(25)

syy = −2 (1 + w) δ
∂2ψ

∂x∂y
− 2Aδ

2δ2
(
∂2ψ

∂x∂y

)2

+

(
−δ2 ∂

2ψ

∂x2 +
∂2ψ

∂y2

)2

+ 2δ2
(
−

∂2ψ

∂x∂y

)2 ∂2ψ

∂x∂y
(26)

∂2ψ

∂x∂y
−
∂2ψ

∂x∂y
= 0 (27)

Reδ(
∂2ψ

∂t∂y
+

∂3ψ

∂x∂y2 −
∂3ψ

∂x∂y2 ) = −
∂p
∂x

+ δ2 ∂

∂x
sxx +

∂

∂y
sxy − Ha2cosβ

(
∂ψ

∂y
cosβ + δ

∂ψ

∂x
sinβ

)
−

1
Da

∂ψ

∂y
−

1
α2(

δ4 ∂4

∂x4 + 2δ2 ∂4

∂x2∂y2 +
∂4

∂y4

)
∂ψ

∂y
+

Re
Fr

sin α∗
(28)

Re δ3
(
−
∂2ψ

∂t∂y
+

∂3ψ

∂x2∂y
−

∂3ψ

∂x2∂y

)
= −

∂p
∂y

+ δ2 ∂

∂x
sxy + δ

∂

∂y
syy+

Ha2 sin β
(
δ
∂ψ

∂y
cos β + δ2 ∂ψ

∂x
sin β

)
+ δ2 1

Da
∂ψ

∂x
+

1
α2 δ

2
(
δ4 ∂

4

∂x4 + 2δ2 ∂4

∂x2∂y2 +

∂4

∂y4

)
∂ψ

∂x
− δ

Re
Fr

cosα∗

(29)
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The wave frame’s dimensionless boundary conditions are [10]:
ψ = F

2 , at y= h.1 , ψ = − F
2 , at y= h.2,

∂ψ
∂y + β1

∂2ψ
∂y2 = −1 at y= h.1, ∂ψ

∂y − β1
∂2ψ
∂y2 = −1 at y= h.2,

∂3ψ

∂y3 = 0 at y = h1,
∂3ψ

∂y3 = 0 at y = h2 (30)

In the wave frame, ( F ) is the dimensionless temporal mean flow rate. Through the expression, it is related to the
dimensionless temporal mean flow rate (Q) in the laboratory frame. [58]

Q =F. + 1 + d∗ (31)

h1(x) and h2(x) have dimensionless forms:

h1(x) = 1 + a sin(X), h2(x) = −d∗ − b sin(X + ∅) (32)

where (a) , (b).,( ∅). and (d∗). satisfy. [10]:

a2 + b2 + 2.abcos(∅.) ≤ (1 + d∗)2.

6. EFFECT OF COUPLE - STRESS
A relationship here between couple stress parameter (α) and the material fluid parameters (A) would be discovered in

this section.
This relationship will aid us in simplifying the problem’s solution strategy. Because, as mentioned in the previous

chapter, finding the zero and first-order solutions is required seeing the effect of any and all parameters that present in the
problem. However , using the relationship between the couple stress parameter and the material fluid parameters we need
to find the zero order only .

From dimensionless the material fluid parameters :
Let A = w

6 ( c
c1 d )2

then

d =

√
w
6A

(
c

c1
) (33)

since α = d
√

µ

µ1
(34)

substitute Eq.(34) into Eq.(34 ), we get α =
√

wµ
6Aµ1

( c
c1

)

α2 =
wµ

6Aµ1

(
c
c1

)2

and
1
α2 =

6Aµ1

wµ

(c1

c

)2
(35)

7. SOLUTION OF THE PROBLEM
Substitute the terms (31) in to Eqs. (24) to Eqs. (29), together with the boundary conditions Eqs. (30) Since δ ≤ 1,

and using the approximation of a long wavelength and a low Reynolds number. For the appearance of the couple stress
parameter in the equation, the solution is limited to the zero order by giving all the parameters required to solve the
problem and find the results, we get the motion equation in the terms of stream function which is

ψyyyy − ξ ψyy −
1
α2ψyyyyyy = 0 (36)

ξ =

Ha2cos2β +
1

Da
w + 1

(37)

η =
1

1 + w
(38)
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The solution of the momentum equation.is straight forward. and can be written as

ψ =
√

2(

√
2e

y

√
α
(
α −

√
α2 − 4ζη

)
η

√
2 ηc1

α
(
α −

√
α2 − 4ζη

) +

√
2e
−

y

√
α
(
α −

√
α2 − 4ζη

)
η

√
2 ηc2

α
(
α −

√
α2 − 4ζη

) +

√
2e

y

√
α
(
α +

√
α2 − 4ζη

)
η

√
2 ηc3

α
(
α +

√
α2 − 4ζη

) +

√
2e
−

y

√
α
(
α +

√
α2 − 4ζη

)
η

√
2 ηc44

α
(
α +

√
α2 − 4ζη

) ) + c5 + yc6

(39)

From Eq. (25) in Eq. (28) we get :

∂p
∂x

= (w + 1)ψyyy − (w + 1)ξ ψy −
1
α2ψyyyyy +

Re
Fr

sin ∝∗ (40)

−
∂p
∂y

= 0 (41)

The pressure rise per wave length ( 4p.) is defined. as

∆p =
∫ 1

0 .
∂p
∂x

dx . (42)

In the fixed frame, this axial velocity component is given as

u(x., y., t.) = 1 + ψy (43)

8. RESULTS AND DISCUSSION
To study the effect of physical parameters such as Effect of Hartman number (Ha), Darcy number (Da), Renold number

(Re), Froude number (Fr) ,couple stress (α), Inclination angle of the channel to the horizontal axis (α∗), inclination of
magnetic field (β), represent the dimensionless slip parameters (β1), material fluid parameter (w) and amplitude ratio
(∅). we have plotted the axial velocity (u), and stream function (ψ) in figs. 2.-15. are illustrated using the software
MATHEMATICA .

8.1 VELOCITY DISTRIBUTION

For varying values of (u), difference in axial velocity throughout the channel . "The effect different values of (Ha),
(Da), (β), (β1),(w),(α) and (∅) on axial velocity (u) are explained in Figs. 2.- 8."The behavior of velocity distribution is
parabolic as seen in figures. Figs. 2.,5. shows that the axial velocity with increasing (Ha) and (β1) increases in the central
region and the boundary of the channel wall. Fig.3. displayed the influence of (Da) on the axial velocity, it is noticed
that at the walls of the channel, the axial velocity decreases with an increase of (Da), and decreases at the center of the
channel. Fig. 4. noted that the axial velocity do not change at increasing in (β). Figs 6.,7. the axial velocity increasing with
increasing (α) and (w) increasing in the central region and not change in the boundary of the channel wall. From fig.8. At
increasing in (∅), the axial velocity falls in the middle region and the channel’s boundary right, while increasing in the
channel’s boundary left.

8.2 TRAPPING PHENOMENON

Closed stream lines trap the amount of fluid known as bolus inside the channel tube near the walls in peristaltic flows,
and this trapped bolus pushes forward in the direction of wave propagation. In figs 9. – 15. the stream lines are plotted
at various values of Ha, Da, β, β1, α ,w and ∅ . Figs 9. , 14. the exhibits that the trapping exist for both upper and lower
walls , we observe that size of trapping bolus decreases with increases (Ha) and (w) . Figs 10. and 11. the exhibits that
the trapping exist for both upper and lower walls , we observe that size of trapping bolus no change with increases (Da)
and (β) . Figs 12. , 13. show that trapping exists for both the upper and lower walls, and that the size of the trapping bolus
lowers and expands as (β1) and (α) increase. Fig 15. the exhibits that the trapping exist for both upper and lower walls, we
observe that size of trapping bolus increases with increases (∅) and open channel with (∅ = π) ".
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FIGURE 2. Variation of velocity for different values of Ha when Da=3,β=0.5, β 1 =4, α= 0.4,w= 3,∅= 0.5 ,a= 0.2 , b= 0.2 , d *
= 0.5 ".

FIGURE 3. Variation of velocity for different values of Da when Ha=3, β=0.5,β 1 =4 ,α=0.4,w= 3,∅= 0.5, a= 0.2 , b= 0.2, d * =

0.5 ".

FIGURE 4. Variation of velocity for different values of β when Ha=3 , Da=3, β 1 =4, α= 0.4, w= 3 , ∅= 0.5 ,a= 0.2 , b= 0.2 , d *
= 0.5"
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FIGURE 5. Variation of velocity for different values of β 1 when Ha=3,Da=3, β=0.5,α= 0.4, w= 3 , ∅= 0.5 ,a= 0.2 , b= 0.2, d *
= 0.5".

FIGURE 6. Variation of velocity for different values of α when Ha=3 ,Da=3, β=0.5, β 1 =4 ,w= 3 ,∅= 0.5 ,a= 0.2, b= 0.2 , d * =

0.5".

FIGURE 7. Variation of velocity for different values of w when Ha=3 , Da=3, β=0.5, β 1 =4 ,α= 0.4,∅= 0.5 ,a= 0.2, b= 0.2 ,d *
= 0.5".
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FIGURE 8. Variation of velocity for different values of ∅ when Ha=3, Da=3, β=0.5, β 1 =4, α= 0.4, w= 2,a= 0.2 , b= 0.2 , d * =

0.5".

FIGURE 9. Stream function in the wave frame of Ha such that in (a) Ha=3,(b) Ha=6,(c)Ha=9, in Da =2, β=0.5, β 1 =4, α = 0.4,
w=2, ∅ = 0.5, a = 0.2, b = 0.2, d ∗ = 0.5" .

FIGURE 10. Stream function in the wave frame of Da such that in (a) Da=2, (b) Da=4, (c) Da=6, in Ha=3, β=0.5, β 1 =4, α =

0.4, w=2, ∅ = 0.5, a = 0.2, b = 0.2, d ∗ = 0.5" .
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FIGURE 11. "stream function in the wave frame of β such that in (a) β =0.5, (b) β = π
3 , (c) β = π

2 in Ha =3, Da = 2, β 1 = 4, α =

0.4, w = 2, ∅ = 0.5, a = 0.2, b = 0.2, d ∗ = 0.5" .

FIGURE 12. "stream function in the wave frame of βsuch that in (a) β 1 =4, (b) β 1 =8 , (c) β 1 =12 , in Ha =3, Da = 2, β = 0.5,
α = 0.4, w = 2, ∅ = 0.5, a = 0.2, b = 0.2, d ∗ = 0.5" .

FIGURE 13. stream function in the wave frame of α such that in (a) α =0.4 , (b) α =1.6 , (c) α =2.8 , in Ha =3, Da =2, β=0.5, β 1
=4, w=2, ∅ = 0.5, a = 0.2, b = 0.2, d ∗ = 0.5".
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FIGURE 14. stream function in the wave frame of w such that in (a)w= 2, (b)w =6, (c)w=10 in Ha =3 , Da =2, β=0.5, β 1 =4, α
= 0.4, ∅ = 0.5, a = 0.2, b = 0.2, d ∗ = 0.5 ".

FIGURE 15. stream function in the wave frame of ∅ such that in (a)∅=0.5,(b) ∅ = π
2 , (c)∅ = π in Ha 2 =3 , Da =2, β=0.5, β 1 =4,

α = 0.4, w=2, a = 0.2, b = 0.2, d ∗ = 0.5" .
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9. CONCLUSIONS
In light of this studies, some of the more intriguing findings have been described, with a focus on the study Effect

of Couple Stress on Peristaltic Transport of Powell-Eyring Fluid Peristaltic flow in Inclined Asymmetric Channel with
Porous Medium The results are discussed through graphs , as follows :

• By increasing (Ha) and (β1) increases in the central region and the boundary of the channel wall but the opposite
occur for increasing (Da).

• The axial velocity no change near the wall while it increases at the center of the channel by increasing (α) and (w)
. Furthermore increasing (β) has not effected on the axial velocity.

• At increasing in (∅.) , the axial velocity falls in the middle region and the channel’s boundary right, while increasing
in the channel’s boundary left.

• The size of trapped bolus decreases with increasing (Ha) and (w) , we observe that size of trapping bolus no change
with increases (Da) and (β) ".

• Demonstrate "that trapping exists for both the upper and lower walls, and that the size of the trapping bolus decreases
and increases as (β 1 ) and (α) rise".

• The exhibits show that the trapping is present on both the upper and lower sides, we observe that size of trapping
bolus increases with increases ( ∅. ) and open channel with ( ∅ = π) .
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