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1. INTRODUCTION 
Numerous issues found in mathematical physics literature can be uniquely expressed as Lane-Emden type equations, 

which are stated in the following way: 

𝑦!! +
2
𝑡 𝑦

! + 𝑓(𝑡)𝑔(𝑦) = ℎ(𝑡), 𝑦(0) = 𝐴, 𝑦!(0) = 0, 0 < 𝑡 ≤ 1																																																																																						(1)		 
where A is a constant, 𝑓(𝑡), ℎ(𝑡)	𝑎𝑛𝑑	𝑔(𝑦)	are some given functions of 𝑡 and 𝑦,respectively. 

Lane [1,2] introduced this equation, and Emden [3] investigated it further. Stellar study of structure has been a major 
challenge since the inception of stellar astrophysics. Determining the material, pressure, and density rotational patterns 
of stars has been an ongoing endeavor. one significant outcome of these investigations is the Lane-Emden equation, 
which characterizes the density profile of the gaseous star. In mathematics, the second-order singular ordinary differential 
equation is known as the Lane-Emden equation. In astrophysics, the Lane-Emden equation can be viewed as a Poisson 
equation for the gravitational potential of a self-gravitating spherically symmetric polytropic fluid. 

the theory of star structure, isothermal gas spheres, the thermal behavior of a spherical cloud of gas, and thermionic 
currents are only a few of the phenomena that have been modeled by the Lane-Emden equation in mathematical physics, 
thermodynamics, fluid mechanics, and astrophysics [4-8]. The initial version of the equations in the Lane-Emden type 
was published by Lane [9]. Emden investigated them in further detail in 1870 [10], taking into account the thermal 
behavior of a spherical cloud of gas that is subject to the classical principles of thermodynamics and behaves under the 
mutual attraction of its molecules. It is kindly asked that the reader go through [4-15] to learn more about the history, 
modifications, and uses of Lane-Emden-type equations. 

the Lane-Emden equation was solved using various methods in numerous investigations. Wazwaz, 2001 [16] applied 
a new algorithm for solving differential equations of Lane-Emden type. Homotopy perturbation method (HPM) was 
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utilized by Yildirim and Ozis, 2007 [17] to solve Lane-Emden singular IVPs. Ramos, 2008 [18] used series approach to 
the Lane-Emden equation and comparison with the HPM. the singular Lane-Emden type equation was analytically solved 
using the optimal homotopy asymptotic method (OHAM) by Iqbal and Javed (2011) [19]. Abu Arqub et al, 2013 [20] 
applied new analytical method to representation of the exact solution of generalized Lane-Emden equations.  šmarda and 
khan 2015, [21] used an effective computational method for resolving singular initial value issues for equations of the 
Lane-Emden type. Hosseini and Abbasbandy 2015, [22] combined the spectral method and Adomian decomposition 
method (ADM) to solve Lane-Emden equations. Tripathi and Mishra, 2016 [23] used homotopy perturbation method 
with Laplace Transform (LT-HPM) for solving Lane-Emden type differential equations. Al-Hayani et al., 2017 [24] used 
the homotopy analysis method (HAM) in conjunction with the genetic algorithm. Parand and Hashemi, 2018 [25] used 
RBF-DQ method for solving non-linear differential equations of Lane-Emden. Izadi, 2021 [26] used a discontinuous 
finite element approximation to singular Lane-Emden –type equations. Saadeh et al.,2022[27] used a new technique 
Laplace transform and residual error function to building a series solution of Lane-Emden equation. AWONUSIKA and 
OLATUNJI, 2022 [28] used a numerical and Analytical solutions of a class of generalised Lane-Emden equations.  
Parand et al., 2023 [29] solved nonlinear differential equations of Lane–Emden type   by neural network approach. 
AWONUSIKA 2024 [30] used Adomian decomposition method  to get an analytical solution of a class of Lane–Emden 
equations. 

The Laplace transformation method with variational iteration method (LTVIM) will be used in this paper. Achieving 
Approximate-exact solutions for several models of second order Lane-Emden equation with singular behavior at 𝑡 = 0 
is the main objective of this effort. The LTVIM handles both linear and nonlinear factors in an understandable manner 
without the need for any further steps. It has been shown that this method yields quickly convergent series solutions for 
both linear and nonlinear problems. 

This paper is organized as follows: section 2, demonstrates the derivation of the proposed method, LTVIM has 
applied to solve problems and obtain all numerical results in section 3, and in section 4 is specific to conclusions. 
 
2. APPLICATIONS OF LTVIM TO LANE-EMDEN EQUATION 
Multiplying 𝑡 and then taking the Laplace transform on both sides of Eq. (1) gives 
ℒ[𝑡𝑦!!(𝑡)] + ℒ[2𝑦′(𝑡)] + ℒ[𝑡𝑓(𝑡)𝑔(𝑦)] − ℒ[𝑡ℎ(𝑡)] = 0, 
−𝑠"ℒ![𝑦(𝑡)] − 𝑦(0) + ℒ[𝑡𝑓(𝑡)𝑔(𝑦)] − ℒ[𝑡ℎ(𝑡)] = 0,																																																																																																			(2) 
where ℒ![𝑦(𝑡)] = #

#$
ℒ[𝑦(𝑡)], ℒ is the operator of Laplace transform. 

To solve Eq. (2), the VIM admits the use of the correction functional given by 

ℒ[𝑦%&'(𝑡)] = ℒ[𝑦%(𝑡)] + ;𝜆(𝑠; 𝑡){−𝑠"ℒ![𝑦%(𝑡)] − 𝑦%(0)+ℒ[𝑡𝑓(𝑡)𝑔(𝑦%)] − ℒ[𝑡ℎ(𝑡)]}𝑑𝑠.																														(3) 

Taking the variation with respect to 𝑦%(𝑡) on both sides of the Eq. (3) leads to 
𝛿
𝛿𝑦%

ℒ[𝑦%&'(𝑡)] =
𝛿
𝛿𝑦%

ℒ[𝑦%(𝑡)] +
𝛿
𝛿𝑦%

;𝜆(𝑠; 𝑡){−𝑠"ℒ![𝑦%(𝑡)] − 𝑦%(0)+ℒ[𝑡𝑓(𝑡)𝑔(𝑦%)] − ℒ[𝑡ℎ(𝑡)]}𝑑𝑠.							(4) 

Calculus of variations and integration by parts of Eq. (4) gives 

ℒ[𝛿𝑦%&'(𝑡)] = ℒ[𝛿𝑦%(𝑡)][1 − 𝑡"𝜆(𝑡; 𝑡)] + ;ℒ[𝛿𝑦%(𝑡)][𝑠"𝜆′(𝑠; 𝑡) +2𝑠𝜆(𝑠; 𝑡)]𝑑𝑠.																																															(5) 

Note that 𝛿𝑦%&'(0) = 0, we obtain the stationary conditions 

E
ℒ[𝛿𝑦%]: 𝑠"𝜆′(𝑠; 𝑡) + 2𝑠𝜆(𝑠; 𝑡) = 0,

ℒ[𝛿𝑦%]: 1 − 𝑠"𝜆(𝑠; 𝑡)|$() = 0,
																																																																																																																														(6) 

for which the Lagrange multiplier 𝜆 should satisfy. Solving the system (6) for 𝜆 yields 

𝜆(𝑠; 𝑡) =
1
𝑠" ,																																																																																																																																																																												

(7) 
Substituting Eq. (7) in Eq. (3) we get 

ℒ[𝑦%&'(𝑡)] = ℒ[𝑦%(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦%(𝑡)] − 𝑦%(0)+ℒ[𝑡𝑓(𝑡)𝑔(𝑦%)] − ℒ[𝑡ℎ(𝑡)]}𝑑𝑠,				(8) 

taking inverse Laplace of Eq. (8), we obtain iterations formula 

𝑦%&'(𝑡) = ℒ*' Kℒ[𝑦%(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦%(𝑡)] − 𝑦%(0)+ℒ[𝑡𝑓(𝑡)𝑔(𝑦%)] − ℒ[𝑡ℎ(𝑡)]}𝑑𝑠}, 𝑛 ≥ 0									(9) 

 
3. APPLICATIONS AND NUMERICAL RESULTS 

In this section, we examine distinct models with singular behavior at 𝑡	 = 	0,  three models nonlinear IVPs and 
two models linear BVPs. To show the high accuracy of the approximate solution results (LTVIM) and the Padé 
approximation (PA) of order [𝑁/𝑀] compared with the exact solution, the absolute errors between them are defined as 
follows: 
𝐴𝐸' = |Exact	Solution − LTVIM|, 
𝐴𝐸" = |Exact	Solution − Padé	Approximation|. 
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With a precision of 20 digits, the computations related to the examples were carried out using the Maple 18 
package. 
 
3.1 LANE–EMDEN NON-LINEAR IVPS 

Problem 1. Solve the following non-linear nonhomogeneous Lane-Emden equation by using LTVIM 

𝑦!! +
2
𝑡 𝑦

! + 𝑦+ = 6 + 𝑡,, 𝑦(0) = 0, 𝑦′(0) = 0.																																																																																																							(10) 

Multiplying 𝑡 and then taking the Laplace transform on both sides of Eq. (10) gives 
−𝑠"ℒ![𝑦(𝑡)] − 𝑦(0) + ℒ[𝑡𝑦+(𝑡)] − ℒ[6𝑡 + 𝑡-] = 0,																																																																																																			(11) 
Operating with Laplace transform on both sides of Eq. (11) and applying by the same way proceeding as the Eqs. (3)-
(9), we obtain the following recursive way 

𝑦%&'(𝑡) = ℒ*' Kℒ[𝑦%(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦%(𝑡)] − 𝑦%(0) + ℒ[𝑡𝑦%+(𝑡)]−ℒ[6𝑡 + 𝑡-]}𝑑𝑠}	, 𝑛 ≥ 0											(12) 

Let 𝑦.(𝑡) = 0, then, from (12), we have 

𝑦'(𝑡) = ℒ*' Kℒ[𝑦.(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦.(𝑡)] − 𝑦.(0) + ℒ[𝑡𝑦.+(𝑡)]−ℒ[6𝑡 + 𝑡-]}𝑑𝑠}, 

= 𝑡" +
1
72 𝑡

/, 
In the same way the other iterations 

𝑦"(𝑡) = 𝑡" −
1

5040 𝑡
'0 −

1
725760 𝑡

". −
1

262020096 𝑡
",, 

𝑦+(𝑡) = 𝑡" + 0.1417 × 10*1𝑡". + 0.5888 × 10*/𝑡", − 0.10099 × 10*2𝑡+" 
−0.1106 × 10*''𝑡+/ − 0.122624 × 10*'0𝑡00 + 0.5144 × 10*',𝑡1. 
+0.4815 × 10*'/𝑡1, + 0.2272 × 10*".𝑡," + 0.6480 × 10*"+𝑡,/ 
+0.1084 × 10*"1𝑡-0 + 0.8578 × 10*"2𝑡/.. 

This series has the closed form as 𝑛 → ∞ gives 𝑡", i.e., 
𝑦3456)(𝑡) = 𝑡", 
which is the exact solution of the problem 1. 
In Table 1 present the numerical results applying the LTVIM l𝒚𝟑(𝒕)o, the Padé approximation (PA) of order [1/1] with 
the exact solution l𝑦3456)(𝑡)o. 

[1/1] =
𝑎. + 𝑎'𝑡
1 + 𝑏'𝑡

= 𝑡". 

Table 1. Numerical results for problem 1 
𝒕 𝒚𝑬𝒙𝒂𝒄𝒕(𝒕) 𝒚𝟑(𝒕) 𝑨𝑬𝟏 PA [1/1] 𝑨𝑬𝟐 

0.0 0.0 0.000000000 0.0 0.0 0.0 

0.1 0.01 0.010000000 1.417E-26 0.01 0.0 

0.2 0.04 0.040000000 1.486E-20 0.04 0.0 

0.3 0.09 0.090000000 4.941E-17 0.09 0.0 

0.4 0.16 0.160000000 1.558E-14 0.16 0.0 

0.5 0.25 0.250000000 1.351E-12 0.25 0.0 

0.6 0.36 0.360000000 5.182E-11 0.36 0.0 

0.7 0.49 0.490000001 1.131E-09 0.49 0.0 

0.8 0.64 0.640000016 1.635E-08 0.64 0.0 

0.9 0.81 0.810000172 1.726E-07 0.81 0.0 

1.0 1.00 1.000001423 1.423E-06 1.00 0.0 
 
In Figure 1, a very good agreement is shown between the exact solution (𝑦3456)(𝑡)) with a continuous line and the 
LTVIM l𝒚𝟑(𝒕)o with the symbol o. 
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Fig. 1. Graph of 𝑦3456)(𝑡) and LTVIM l𝒚𝟑(𝒕)o 

 
Problem 2. Solve the following non-linear homogeneous Lane-Emden equation by using LTVIM 

𝑦!!(𝑡) +
2
𝑡 𝑦

!(𝑡)+𝑦1 = 0 , 𝑦(0) = 1, 𝑦′(0) = 0.																																																																																																		(13) 

Multiplying 𝑡 and then taking the Laplace transform on both sides of Eq. (13) gives 
−𝑠"ℒ![𝑦(𝑡)] − 𝑦(0) + ℒ[𝑡𝑦1(𝑡)] = 0.																																																																																																																									(14) 
Operating with Laplace transform on both sides of Eq. (14) and applying by the same way proceeding as the Eqs. (3)-
(9) we obtain the following recursive way 

𝑦%&'(𝑡) = ℒ*' Kℒ[𝑦%(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦%(𝑡)] − 𝑦%(0)+ℒ[𝑡𝑦%1(𝑡)]}𝑑𝑠},							𝑛 ≥ 0																																				(15) 

Let 𝑦.(𝑡) = 1, then, from Eq. (15), we have 

𝑦'(𝑡) = ℒ*' Kℒ[𝑦.(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦.(𝑡)] − 𝑦.(0) + ℒ[𝑡𝑦.1(𝑡)]} 𝑑𝑠s, 

= 	1 −
1
6 𝑡

", 
In the same way the other iterations 

𝑦"(𝑡) = 1 −
1
6 𝑡

" +
1
24 𝑡

0 −
5
756 𝑡

, +
5

7776 𝑡
/ −

1
28512 𝑡

'. +
1

1213056 𝑡
'", 

𝑦+(𝑡) = 1 −
1
6 𝑡

" +
1
24 𝑡

0 −
5
432 𝑡

, +
55

18144 𝑡
/ −

221
299376 𝑡

'. +
93437

560431872 𝑡
'" 

−
638941

18307441152 𝑡
'0 +

159505
23538138624 𝑡

', − 𝑂(𝑡'/), 

𝑦0(𝑡) = 1 −
1
6 𝑡

" +
1
24 𝑡

0 −
5
432 𝑡

, +
35

10368 𝑡
/ −

199
199584 𝑡

'. +
2609

8895744 𝑡
'" 

−
501899

5884534656 𝑡
'0 +

547728065
22408307970048 𝑡

', −
3107584225

450802430926848 𝑡
'/ 

+
325832483089

170403318890348544 𝑡
". − 𝑂(𝑡""). 

This series has the closed form as 𝑛 → ∞ gives '

?'&!")
#
, i.e., 

𝑦3456)(𝑡) = 	
1

u1 + 13 𝑡
"

, 

which is the exact solution of the problem 2. 
In Table 2 present the numerical results applying the LTVIM l𝒚𝟒(𝒕)o, the Padé approximation (PA) of order [4/4] with 
the exact solution l𝑦3456)(𝑡)o. 
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[4/4] =
∑ 𝑎A𝑡A0
A(.

1 + ∑ 𝑏A𝑡A0
A('

=
1
144 𝑡

0 + 14 𝑡
" + 1

5
144 𝑡

0 + 5
12 𝑡

" + 1
. 

Table 2. Numerical results for problem 2 
𝒕 𝒚𝑬𝒙𝒂𝒄𝒕(𝒕) 𝒚𝟒(𝒕) 𝑨𝑬𝟏 PA [4/4] 𝑨𝑬𝟐 

0.0 1.000000000 1.000000000 0.000E-00 1.000000000 0.000E-00 

0.1 0.998337488 0.998337488 1.549E-15 0.998337488 7.956E-16 

0.2 0.993399267 0.993399267 1.538E-12 0.993399267 7.909E-13 

0.3 0.985329278 0.985329278 8.434E-11 0.985329278 4.342E-11 

0.4 0.974354703 0.974354705 1.396E-09 0.974354704 7.205E-10 

0.5 0.960768922 0.960768934 1.191E-08 0.960768928 6.161E-09 

0.6 0.944911182 0.944911248 6.639E-08 0.944911216 3.445E-08 

0.7 0.927145540 0.927145815 2.749E-07 0.927145684 1.431E-07 

0.8 0.907841299 0.907842212 9.133E-07 0.907841776 4.775E-07 

0.9 0.887356509 0.887359069 2.559E-06 0.887357853 1.343E-06 

1.0 0.866025403 0.866031669 6.265E-06 0.866028708 3.304E-06 
 
In Figure 2, a very good agreement is shown between the exact solution (𝑦3456)(𝑡)) with a continuous line and the 
LTVIM l𝒚𝟒(𝒕)o with the symbol o. 
 

 
Fig. 2. Graph of 𝑦3456)(𝑡) and LTVIM l𝒚𝟒(𝒕)o 

 
Problem 3. Solve the following non-linear homogeneous Lane-Emden equation by using LTVIM 

𝑦!!(𝑡) +
2
𝑡 𝑦

!(𝑡) + 8𝑒B()) + 4𝑒B())/" = 0, 𝑦(0) = 0, 𝑦′(0) = 0																																																																										(16) 

Multiplying 𝑡 and then taking the Laplace transform on both sides of Eq. (16) gives 
−𝑠"ℒ![𝑦(𝑡)] − 𝑦(0) + ℒx8𝑡𝑒B()) + 4𝑡𝑒B())/"y = 0.																																																																																																				(17) 
Operating with Laplace transform on both sides of Eq. (17) and applying by the same way proceeding as the Eqs. (3)-
(9) we obtain the following recursive way 

𝑦%&'(𝑡) = ℒ*' Kℒ[𝑦%(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦%(𝑡)] − 𝑦%(0)+ℒx8𝑡𝑒B$()) + 4𝑡𝑒B$())/"yz𝑑𝑠z, 𝑛 ≥ 0										(18) 

Let 𝑦.(𝑡) = 0, then, from (18), we have 
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𝑦'(𝑡) = ℒ*' Kℒ[𝑦.(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦.(𝑡)] − 𝑦.(0)+ℒx8𝑡𝑒B%()) + 4𝑡𝑒B%())/"yz𝑑𝑠z, 

=	−2𝑡", 

𝑦"(𝑡) = −2𝑡" + 𝑡0 −
3
7 𝑡

, +
17
108 𝑡

/ −
1
20 𝑡

'., 

𝑦+(𝑡) = −2𝑡" + 𝑡0 −
2
3 𝑡

, +
353
756 𝑡

/ −
1247
3780 𝑡

'. +
1427
6552 𝑡

'" − 𝑂(𝑡'0). 

𝑦0(𝑡) = −2𝑡" + 𝑡0 −
2
3 𝑡

, +
1
8 𝑡

/ −
16507
41580 𝑡

'. +
2621
8424 𝑡

'" −
355139
1474200 𝑡

'0 + 𝑂(𝑡',). 
This series has the closed form as 𝑛 → ∞ gives −2𝑙𝑛(𝑡" + 1), i.e., 
𝑦3456)(𝑡) = −2𝑙𝑛(𝑡" + 1), 
which is the exact solution of the problem 3. 
In Table 3 present the numerical results applying the LTVIM l𝒚𝟒(𝒕)o, the Padé approximation (PA) of order [4/4] with 
the exact solution l𝑦3456)(𝑡)o. 

[4/4] =
∑ 𝑎A𝑡A0
A(.

1 + ∑ 𝑏A𝑡A0
A('

=
−𝑡0 − 2𝑡"
1
6 𝑡

0 + 𝑡" + 1
. 

Table 3. Numerical results for problem 3 
𝒕 𝒚𝑬𝒙𝒂𝒄𝒕(𝒕) 𝒚𝟒(𝒕) 𝑨𝑬𝟏 PA [4/4] 𝑨𝑬𝟐 

0.0 0.0 0.0 0.0 0.0 0.0 

0.1 -0.019900661 -0.019900661 2.788E-13 -0.019900661 1.083E-12 

0.2 -0.078441426 -0.078441426 2.238E-10 -0.078441425 1.030E-09 

0.3 -0.172355392 -0.172355384 7.842E-09 -0.172355339 5.276E-08 

0.4 -0.296840010 -0.296839970 3.958E-08 -0.296839212 7.981E-07 

0.5 -0.446287102 -0.446287611 5.090E-07 -0.446280991 6.110E-06 

0.6 -0.614969399 -0.614977084 7.684E-06 -0.614939200 3.019E-05 

0.7 -0.797552239 -0.797603866 5.162E-05 -0.797442293 1.099E-04 

0.8 -0.989392483 -0.989627708 2.352E-04 -0.989072744 3.197E-04 

0.9 -1.186653690 -1.187485463 8.317E-04 -1.185870216 7.834E-04 

1 -1.386294361 -1.388743062 2.448E-03 -1.384615384 1.678E-03 
 
In Figure 3, a very good agreement is shown between the exact solution (𝑦3456)(𝑡)) with a continuous line and the 
LTVIM l𝒚𝟒(𝒕)o with the symbol o. 
 

 
Fig. 3. Graph of 𝑦3456)(𝑡) and LTVIM l𝒚𝟒(𝒕)o 
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3.2 LANE–EMDEN_LINEAR BVPS 

Problem 4. Solve the following linear homogeneous Lane-Emden equation by using LTVIM 

𝑦!! +
2
𝑡 𝑦

! − (4𝑡" + 6)𝑦 = 0, 𝑦(0) = 1, 𝑦(1) = 𝑒																																																																																															(19) 

Multiplying 𝑡 and then taking the Laplace transform on both sides of Eq. (19) gives 
−𝑠"ℒ![𝑦(𝑡)] − 𝑦(0) − ℒ[(4𝑡+ + 6𝑡)𝑦(𝑡)] = 0.																																																																																																										(20) 
Operating with Laplace transform on both sides of Eq. (20) and applying by the same way proceeding as the Eqs. (3)-
(9) we obtain the following recursive way 

𝑦%&'(𝑡) = ℒ*' Kℒ[𝑦%(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦%(𝑡)] − 𝑦%(0)−ℒ[(4𝑡+ + 6𝑡)𝑦%(𝑡)]}𝑑𝑠}	,											𝑛 ≥ 0															(21) 

Let 𝑦.(𝑡) = 1 + 𝑡𝐶, then, from (21), we have 

𝑦'(𝑡) = ℒ*' Kℒ[𝑦.(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦.(𝑡)] − 𝑦.(0)−ℒ[(4𝑡+ + 6𝑡)𝑦.(𝑡)]}𝑑𝑠}, 

= 	1 + 𝑡" +
1
2𝐶𝑡

+ +
1
5 𝑡

0 +
2
15𝐶𝑡

1, 
matching 𝑦'(𝑡)	 with the boundary condition	𝑦(1) = 𝑒, we obtain 𝐶 = 0.818339729 and then 
𝑦'(𝑡) = 1 + 𝑡" + 0.409169864𝑡+ + 0.2000000000𝑡0 + 0.109111963𝑡1 

𝑦"(𝑡) = ℒ*' Kℒ[𝑦'(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦'(𝑡)] − 𝑦'(0)−ℒ[(4𝑡+ + 6𝑡)𝑦'(𝑡)]}𝑑𝑠}, 

= 1 + 𝑡" +
1
2 𝑡

0 +
1
10𝐶𝑡

1 +
13
105 𝑡

, +
1
20𝐶𝑡

- +
1
90 𝑡

/ +
4
675𝐶𝑡

2, 
matching 𝑦"(𝑡)	 with the boundary condition	𝑦(1) = 𝑒,	 we get 𝐶 = 0.534620481 and hence 

𝑦"(𝑡) = 1 + 𝑡" +
1
2 𝑡

0 + 0.053462048𝑡1 + 0.123809523𝑡, + 0.0267310240𝑡- 
+0.011111111𝑡/ + 0.003168121𝑡2. 

In the same way the other iterations 

𝑦+(𝑡) = 1 + 𝑡" +
1
2 𝑡

0 +
1
6 𝑡

, + 0.004266850𝑡- + 0.038095238𝑡/ + 0.003097417𝑡2 
+0.005108225𝑡'. + 𝑂(0.000710662𝑡''), 

𝑦0(𝑡) = 1 + 𝑡" +
1
2 𝑡

0 +
1
6 𝑡

, +
1
24 𝑡

/ + 0.000227207𝑡2 +
47
5775 𝑡

'. + 0.000215732𝑡'' 

+𝑂}
151

128700 𝑡
'"~, 

𝑦1(𝑡) = 1 + 𝑡" +
1
2 𝑡

0 +
1
6 𝑡

, +
1
24 𝑡

/ +
1
120 𝑡

'. + 0.000008611𝑡'' +
2489

1801800 𝑡
'" 

+𝑂(𝑡'+). 
This series has the closed form as 𝑛 → ∞ gives 𝑒)# , i.e., 
𝑦3456)(𝑡) = 𝑒)# , 
which is the exact solution of the problem 4. 
In Table 4 present the numerical results applying the LTVIM l𝒚𝟓(𝒕)o, the Padé approximation (PA) of order [8/8] with 
the exact solution l𝑦3456)(𝑡)o. 

[8/8] =
∑ 𝑎A𝑥A/
A(.

1 + ∑ 𝑏A𝑥A/
A('

=
𝑝/(𝑡)
𝑞/(𝑡)

 

where 
𝑝/(𝑡) = 1 − 0.116078680𝑡 + 0.613834217𝑡" − 0.0604386944𝑡+ 

+0.166525406𝑡0 − 0.0127042126𝑡1 + 0.0244189992𝑡, 
−0.00111560230𝑡- + 0.00169835758𝑡/, 

𝑞/(𝑡) = 1 − 0.116078680𝑡 − 0.386165782𝑡" + 0.0556399863𝑡+ 
+0.0526911894𝑡0 − 0.0103048586𝑡1 − 0.00185596540𝑡, 
+0.000715709972𝑡- − 0.0000969745862𝑡/. 

 
Table 4. Numerical results for problem 4 

𝒕 𝒚𝑬𝒙𝒂𝒄𝒕(𝒕) 𝒚𝟓(𝒕) 𝑨𝑬𝟏 PA [8/8] 𝑨𝑬𝟐 

0.0 1.000000000 1.000000000 0.000E-00 1.000000000 0.000E-00 

0.1 1.010050167 1.010050167 7.96E-17 1.010050167 7.960E-17 

0.2 1.040810774 1.040810774 1.524E-13 1.040810774 1.524E-13 
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0.3 1.094174283 1.094174283 1.245E-11 1.094174283 1.245E-11 

0.4 1.173510870 1.173510871 2.793E-10 1.173510871 2.794E-10 

0.5 1.284025416 1.284025419 3.065E-09 1.284025419 3.066E-09 

0.6 1.433329414 1.433329435 2.104E-08 1.433329435 2.106E-08 

0.7 1.632316219 1.632316321 1.013E-07 1.632316321 1.015E-07 

0.8 1.896480879 1.896481231 3.519E-07 1.896481232 3.530E-07 

0.9 2.247907986 2.247908770 7.834E-07 2.247908767 7.812E-07 

1.0 2.718281828 2.718281828 1.000E-19 2.718281734 9.390E-08 
 
In Figure 4, a very good agreement is shown between the exact solution (𝑦3456)(𝑡)) with a continuous line and the 
LTVIM l𝒚𝟓(𝒕)o with the symbol o. 
 

 
Fig. 4. Graph of 𝑦3456)(𝑡) and LTVIM l𝒚𝟓(𝒕)o 

 
Problem 5. Solve the following linear nonhomogeneous Lane-Emden equation by using LTVIM 

𝑦!! +
1
𝑡 𝑦

! − 𝑦 − (4 + 9𝑡 − 𝑡" − 𝑡+) = 0,			𝑦(0) = 0, 𝑦(1) = 2																																																																												(22) 
Multiplying 𝑡 and then taking the Laplace transform on both sides of Eq. (22) gives 

(−𝑠")ℒ![𝑦(𝑡)] − 𝑠𝑌(𝑠) − ℒ[𝑡𝑦(𝑡)] − }
4
𝑠" +

18
𝑠+ −

6
𝑠0 −

24
𝑠1~ = 0.																																																																																(23) 

Operating with Laplace transform on both sides of (23) and applying by the same way proceeding as the Eqs. (3)-(9) 
we obtain the following recursive way 

𝑦%&'(𝑡) = ℒ*' Kℒ[𝑦%(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦%(𝑡)] − 𝑠ℒ[𝑦%(𝑡)] 

−ℒ[𝑡𝑦%(𝑡)] − }
4
𝑠" +

18
𝑠+ −

6
𝑠0 −

24
𝑠1~s 𝑑𝑠s ,						𝑛 ≥ 0																																																																																				(24) 

Let 𝑦.(𝑡) = 𝑡𝐶, then, from (24), we have 

𝑦'(𝑡) = ℒ*' Kℒ[𝑦.(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦.(𝑡)] − 𝑠ℒ[𝑦.(𝑡)] 

−ℒ[𝑡𝑦.(𝑡)] − }
4
𝑠" +

18
𝑠+ −

6
𝑠0 −

24
𝑠1~s 𝑑𝑠s, 

=	
1
2𝐶𝑡 +

2
3 𝑡

" +
1
12𝐶𝑡

+ +
3
4 𝑡

+ −
1
20 𝑡

0 −
1
30 𝑡

1, 
matching 𝑦'(𝑡)	 with the boundary condition	𝑦(1) = 2, getting 𝐶 = 1.142857142 and hence 

𝑦'(𝑡) =
4
7 𝑡 +

2
3 𝑡

" +
71
84 𝑡

+ −
1
20 𝑡

0 −
1
30 𝑡

1, 
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𝑦"(𝑡) = ℒ*' Kℒ[𝑦'(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦'(𝑡)] − 𝑠ℒ[𝑦'(𝑡)] 

−ℒ[𝑡𝑦'(𝑡)] − }
4
𝑠" +

18
𝑠+ −

6
𝑠0 −

24
𝑠1~s 𝑑𝑠s, 

=
1
4𝐶𝑡 +

8
9 𝑡

" +
1
16𝐶𝑡

+ +
15
16 𝑡

+ −
2
75 𝑡

0 −
1
72 𝑡

1 + 𝑂}
1
360𝐶𝑡

1~, 
matching 𝑦"(𝑡)	 with the boundary condition	𝑦(1) = 2, obtaining 𝐶 = 0.684959093 and hence 

𝑦"(𝑡) =
2721
15890 𝑡 +

8
9 𝑡

" +
124617
127120 𝑡

+ −
2
75 𝑡

0 − 𝑂 }
34283
2860200 𝑡

1~. 
In the same way the other iterations 

𝑦+(𝑡) = ℒ*' Kℒ[𝑦"(𝑡)] + ;
1
𝑠"
{−𝑠"ℒ![𝑦"(𝑡)] − 𝑠ℒ[𝑦"(𝑡)] 

−ℒ[𝑡𝑦"(𝑡)] − }
4
𝑠" +

18
𝑠+ −

6
𝑠0 −

24
𝑠1~s 𝑑𝑠s, 

=
1462701
27781600 𝑡 +

26
27 𝑡

" +
31741867
31750400 𝑡

+ −
49
4500 𝑡

0 −
4535599

1363824000 𝑡
1 − 𝑂}

71
88200 𝑡

,	~, 

𝑦0(𝑡) =
12936071389
786028874400 𝑡 +

80
81 𝑡

" +
2518403108539
2515292398080 𝑡

+ −
68

16875 𝑡
0 −

418735246837
509346710611200 𝑡

1 

−
1733

4630500 𝑡
, − 𝑂 }

50027789653
475390263237120 𝑡

-~, 
𝑦1(𝑡) = 0.00520766151𝑡 + 0.995884774𝑡" + 1.00070508𝑡+ − 0.00142320988𝑡0 

−0.185151473 × 10*+𝑡1 − 0.149408940 × 10*+𝑡, − 0.312898079 × 10*0𝑡- 
−𝑂(0.664441752 × 10*1𝑡/), 

𝑦,(𝑡) = 0.00166421435𝑡 + 0.998628258𝑡" + 1.00030193𝑡+ − 0.490403292 × 10*+𝑡0 
−0.368478762 × 10*0𝑡1 − 0.552300837 × 10*0𝑡, − 0.847872222 × 10*1𝑡- 
−0.281339278 × 10*1𝑡/ − 𝑂(0.539325814 × 10*/𝑡2). 

This series has the closed form as 𝑛 → ∞ gives 𝑡" + 𝑡+, i.e., 
𝑦3456)(𝑡) = 𝑡" + 𝑡+, 
which is the exact solution of the problem 5. 
In Table 5 present the numerical results applying the LTVIM l𝒚𝟔(𝒕)o, the Padé approximation (PA) of order [4/4] with 
the exact solution l𝑦3456)(𝑡)o. 

[4/4] =
∑ 𝑎A𝑡A0
A(.

1 + ∑ 𝑏A𝑡A0
A('

 

=
0.0016642143𝑡 + 0.998078524𝑡" + 0.670428755𝑡+ − 0.331093495𝑡0

1 − 0.330326000𝑡 − 0.000177687𝑡" + 0.000052684𝑡+ − 0.000009742𝑡0. 
Table 5. Numerical results for problem 5 

𝒕 𝒚𝑬𝒙𝒂𝒄𝒕(𝒕) 𝒚𝟔(𝒕) 𝑨𝑬𝟏 PA [4/4] 𝑨𝑬𝟐 

0.0 0.000000000 0.000000000 0.000E-00 0.000000000 0.000E-00 

0.1 0.011 0.011152956 1.529 E-04 0.011152956 1.529E-04 

0.2 0.048 0.048279588 2.795E-04 0.048279588 2.795E-04 

0.3 0.117 0.117379855 3.798E-04 0.117379855 3.798E-04 

0.4 0.224 0.224452356 4.523E-04 0.224452356 4.523E-04 

0.5 0.375 0.375494169 4.941E-04 0.375494168 4.941E-04 

0.6 0.576 0.576500629 5.006E-04 0.576500623 5.006E-04 

0.7 0.833 0.833465037 4.650E-04 0.833465012 4.650E-04 

0.8 1.152 1.152378291 3.782E-04 1.152378203 3.782E-04 

0.9 1.539 1.539228419 2.284E-04 1.539228146 2.281E-04 

1.0 2.000 2.000000000 2.370E-23 1.999999241 7.587E-07 
 
In Figure 5, a very good agreement is shown between the exact solution (𝑦3456)(𝑡)) with a continuous line and the 
LTVIM l𝒚𝟔(𝒕)o with the symbol o. 
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Fig. 5. Graph of 𝑦3456)(𝑡) and LTVIM l𝒚𝟔(𝒕)o 

 
4. CONCLUSIONS 

Five problems IVPs and BVPs from second order of Lane-Emden equation were successfully solved by applying the 
strategy LTVIM. The proposed  method showed fast converge towards exact solution of the solved  problems in this 
paper and thus can be applied on other equations with differential order and obtain a solution  that converges to the exact 
solution, in addition the method succeeded in dealing with the equation despite the presence of the singular behaviour 
point, The LTVIM wider variety of applications stems from its adept handling of various types , The LTVIM idea has 
been used directly without the requirement for restricting assumptions or transformation formulas , also the approximate 
solution we obtained is more accurate when the value of 𝑛 increase. 
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