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ABSTRACT: It has become increasingly apparent that bandwidth scarcity is an issue as wireless communications
advance. Alternatively, spectrum sensing techniques are used to detect licensed users. A spectrum sensor can detect
energy, matched filters, and cyclostationary features. There are, however, some drawbacks to these methods. Energy
detector performance is affected by noise power uncertainty. Every primary user needs a dedicated receiver for
matched filter spectrum sensing. Computational effort and observation time are required for cyclo-stationary feature
detection. Spectrum use is determined using particle swarm optimization (PSO), an algorithm for determining the best
frequency allocation and highest accuracy. Using PSO operations, this paper proposes an improved energy detection
method compared to conventional energy detection methods. Detecting energy and using the PSO channel allocation
technique to detect fading channels is also mathematically described.
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1. INTRODUCTION

Wireless communication that uses cognitive radio (CR) allows a transceiver to detect which communication channels
are in use and which are not. After leaving an occupied channel, the transceiver immediately switches into an empty
one. Radiofrequency (RF) spectrum is used more efficiently with these capabilities. Point process models and random
fields can be used to analyze various statistics related to network connectivity. In addition, distributions may be assigned
to primary users and CRN nodes based on the application being developed. Using collaborative localization techniques,
such estimation is technically straightforward. As long as propagation models are also appropriately modelled, spectrum
models can help improve both spectrum sensing and spectrum usage.

Radio technology that learns radio environments and changes transmission parameters is called cognitive radio, also
called smart radio [1]. Transmitters, Matched Filters, Energy, and other techniques can all be used to detect spectrum
holes. The spectrum management problem arises after the correct frequency is sensed [2]. A device should, therefore, be
able to change its operating parameters automatically whenever a licensed user is not using certain bands during a certain
period [3].

Since wireless devices have become more prevalent due to the development of technology, wireless networks have
become more popular [4]. To ensure better use of frequency bands, spectrum detection techniques are available. PUs are
detected via spectrum detection techniques. Furthermore, with these techniques, the SU benefits from the voids in the
spectrum if no PU is present [5]. CRNs with wireless access points should not interfere with each other [6]. Secondary
users change channels to avoid interfering with primary users [7, 8]. Secondary users should be provided with the most
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appropriate channel to pass through gaps in the frequency band. Analyzing the optimal channel between the available
spectrum bands requires consideration of several parameters and transmission characteristics of secondary users [9].

Cognitive radio relies heavily on sensing, as discussed above. Several factors complicate the sensing process. There is a
possibility that the SNR is very low (below -20dB) as a first factor. In addition, wireless signals are affected by fading and
multipath. Coherent detection methods can be unreliable due to fading (can be as great as 10dB), and signal power can
fluctuate dramatically due to multipaths (up to 10 dB) while multipaths are unknown. Also, noise power uncertainty (noise
power uncertainty) and non-Gaussian noise can affect the level of noise/interference. Noise uncertainty occurs from either
receiving devices or environmental sources. Receiver noise uncertainty occurs from receiving devices, while environment
noise uncertainty occurs from the environment [10—12]. As a result of the uncertainty that arises from noise, obtaining an
accurate noise power in practice is extremely challenging (virtually impossible).

1.1 OFDM FOR COGNITIVE RADIO

Asymmetric frequency division multiplexing, or OFDM, can be understood as Multi-carrier modulation that uses
closely spaced orthogonal subcarriers to modulate data split into chunks. There is no mutual interference between or-
thogonal subcarriers. It is, therefore, extremely useful for the transmission of high-bit-rate data. Transmissions at high
data rates are plagued by inter-symbol interference (ISI) caused by time dispersion of pulses. OFDM modulates data into
overlapping orthogonal subcarriers in a low-rate manner. The number of subcarriers used in this splitting increases the
duration of the symbol, reducing the ISI as a result of multipathing. A cognitive radio system should use OFDM for
transmission [13]. OFDM is suitable for CR-based transmission systems due to its features and capabilities. CR systems
require spectral efficiency, which OFDM provides. Due to the close spacing and overlap of the subcarriers, interference is
not caused.

Adaptability and flexibility are also advantages of OFDM. CR system can be dynamically aided by the subcarriers
depending on the environment. FFT, a digital signal processing tool, can be used to implement OFDM through digital
signal processing.

2. LITERATURE REVIEW

Researchers have investigated resource allocation issues for cluster-based helpful multicast using OFDM frameworks [14].
The group proposes a more efficient bunching scheme to increase the framework aggregate rate. The selection of bunch
heads is based on optional clients (SUs) with great channel conditions, while others select which bunch to be a part of. In
the second stage of the group sorting process, the information is sent to the group heads by the optional base station (BS)
and not to the cluster members by the bunch heads.

When unauthorized users access a frequency group in a structured way through cognitive radio, band effectiveness
increases [15]. Domains that are free or white spaces are evaluated for the primary user (PU) and then vacated by them
when and where it is specified. It is not yet necessary to remove all unauthorized secondary users from the domain
requested by the requested customer to improve its normal use [16]. An engaging atmosphere is the goal of real-time
CR [17]. Customer approvals are given to PUs, and secondary approvals are given to CRUs. The PU sits on the range and
allows CR users to use it. A CR user must acquire data about the radio environment to maintain a strategic distance from
the obstructions in the PU [18]. CRU bands spend a lot of time and energy collecting data about usage by checking their
total transmission capacity. PU signal-to-noise ratio (SNR) was used to select the CRU detection type

Cognitive radio (CR) reduces the underutilisation of the radio spectrum. To effectively exploit the electromagnetic
spectrum, CR is a challenging technology. CR specifies wireless designs that don’t have predetermined channels for
transmission. A high spectral resolution is required to detect the spectrum holes with spectrum sensing (SS). We have
compared the validity and accuracy of our technique with those of other existing techniques in our paper, and the results
show that ours is superior [19].

According to the authors [20], a centralized cognitive radio network is optimized to minimize a particular sensor unit’s
detection, false alarm, and error probability (SU). It must minimise error probability to maximize detection probability
and minimize false alarms.

3. PARTICLE SWARM OPTIMISATION (PSO)

Swarm intelligence is the basis of PSO’s evolutionary algorithm. A process inspired by biological analogies. Real-
valued functions are defined in a given space, and their goal is to find the global optimum of those functions [21]. As the
swarm searched for food, it was inspired by this behaviour. Originally introduced by Kennedy and Eberhart in 1995, this
concept has since become widely accepted. Eberhart was an electrical engineer, and Kennedy was a psychologist. Social
dynamics determine the movement patterns of insects, birds, and fish. Consider the food-searching behavior of fish. Fish
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in a shoal are small particles representing solutions to the search space in the fish’s search space. A process of optimization
is involved in searching for food. Each shoal member competes with the others and shares the information with partners
so that they can find the best solution.

Neither birds nor fish search for food alone but work in collections (herds or groups). Information is shared among
group members, according to the observation. Behavioural patterns are influenced by group behaviour. Simulating the
simplified social system led to the development of the PSO, which is robust to nonlinear optimisation problems [13]. The
PSO algorithm is simpler and better than conventional algorithms because fewer calculations are performed, reduced time
and convergent solutions are produced more quickly.

Artificial Life and Evolutionary Algorithms are closely related to PSOs. A swarm-based searching process is based
on a position-velocity model. Swarm members each represent a potential "solution". The position and velocity of each
particle are used to characterize it.

Position and velocity are the characteristics of each particle. Using avail function or fitness value, fitness values are
determined for each particle based on its position and velocity.

Due to its various advantages and disadvantages, the PSO algorithm is limited to certain applications. Only a few
parameters must be determined, and it has an extremely efficient global search algorithm. The refinement stage of the
search is slow, and local searches are weak. It is easy to use and not affected by parameter scaling [22], [23].

Continuous variable problems are best solved using the PSO algorithm. Artificial Neural Networks have been devel-
oped using it. Image processing and fuzzy logic are two areas in which these networks are trained [24]. Power distribution
optimization can be achieved with this technology. In addition, biomechanics and biochemistry system identification and
shape and size optimization are also used.

According to the algorithm’s processing, synchronous and asynchronous PSOs fall into two basic categories. Parallel
evaluation of particles is the first step of synchronous PSO, followed by comparison. All particles can start at the same
time for iterations. Asynchronous PSO evaluates and compares each particle separately. Evaluating a particle again is
unnecessary if it is already determined to fit, saving calculation time.

b) The PSO parameters [21]

1. Initial Population: Randomly generated particles make up the population.

2. Population Size: A swarm’s number should be determined by its accuracy and computational performance (based
on the tradeoff between the two).

3. Swarm: Populations or particles that move randomly.

4. Search Space: The algorithm computes the solution within this variety of all possible solutions.

5. Number of Iterations: Fitness value converges to an optimal solution after the maximum number of steps.

6. Inertia weight: An algorithm’s convergence is controlled by its inertia weight, which must be carefully chosen. It
is possible to fail convergence if the inertia weight is too high or too low. A binary hypothesis can be used to determine
whether a cognitive radio contains the primary signal.

Hypothesis 0 (Hy): There is no primary signal.

Hypothesis 1 (H): There is no primary signal.

Assume that S is the transmitted signal. The n(n = 1,2, 3, ... ..) sample of y(n) for a complex signal with real S, and
imaginary S; than = §, + j, +5; It is given as follows:

y(n)={nm), 0<n<N-lidle& @ x(n)+n(n) 0<n<N—1busy & )-1

And x (n) = h s(n) a noise sample with a zero mean is referred to as n (n) = nr (n) + jni(n) The channel gain is given
by h, and n(n) is the compound noise.

E (w(n)} = 0 and variance 22, (Var [n(n)]=22,) Le gN(0, 22, ) 22 (Var(n(n)] =22, i,e gN(0, 22 Itis possible
to write Equation 1 as follows:

y(n) =ex(m) +n(n (1

Where 6 = 0 for Hy and 6 = 1 for H, Therefore, the signal model H; can be assumed as:
H1:y(n)={(n(n),& 1<n<no-1@x(n)+n(n) & no<n<N)

H :yn)=(n(n), &1 <n<no—-1@x(n)+nn) &no <n<N) 2)

A comparison of the threshold value and the received signal’s SNR value can be used to determine the primary signal for
CR systems [3].

As a result of the Nyman-Person Criterion, a probability density function can be defined for binary hypothesis models
y His f, H(x)where H € Hy, Hi}

Following are the metrics that define energy detector performance based on the above test statistics:
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False alarm probability Pf: When H, is true, the Probability of determining the signal exists is Pf = Pr[A > A (Hy]
Based on the assumption that A is the detection threshold.

Missed detection probability Pmd: Taking into account the chance that H; is true, the likelihood of the signal being
absent is high, i.e., pmd = Pr[A < A(H{]

Detection probability Pd: The likelihood of determining a signal’s presence increases when it is true, i.e.,Pd =
Pr(A > A(H;]And thus, Pd = 1 — pmd. To determine how well an energy detector performs, it is necessary to assess its
statistical properties A. A signal and noise model is essential for obtaining the statistical properties. A binary hypothesis
system can measure the detector’s sensitivity using ROC curves. A plot of Pd (or Pmd) versus Pf as threshold varies on
the ROC curve is shown in Derivations of Pd and Pf for Different Channel Models [2]. Based on the assumption that noise
n(t) is a bandpass signal, we can represent the noise using a low pass signal:

n(t) = n; (t) cos2nft —n, (t) sin2rft 3)

Assuming Nj is the noise signal with bandwidth (BW), then n(t) is the noise signal with PSD Ny, the noise signal n(t) can
be represented by two components, n; and n,, which represents the noise of the low pass signal, the energy of the noise
for a period of T, having capacity BW/2 and a power spectral density of 2N, for low pass signals

E= [ n?dt 4)

T
E=ﬂﬂﬁm=%ﬁ[wﬁ+%mﬁm )

The likelihood of AWGN being detected and the likelihood of false alarms being detected [2]. The Probability of H; being
selected is given by P4, whereas Py, is given by the possibility of a false alarm when Hj is selected. P; and Py, can also
be defined as follows if the threshold value is selected:

P, and Py, It can also be defined as follows, assuming that the threshold value is chosen:

P, =P(Y >«H,)

Pfa = P(Y > K|H0)

Using their PDFs, Py, This can be expressed as follows:

Pra= ffy(y)dy

quations and formulae should be typed in Mathtype, and numbered consecutively with Arabic numerals in parentheses on
the right hand side of the page (if referred to explicitly in the text). They should also be separated from the surrounding
text by one space. (1)

4. RESULT SIMULATION

Signal detection is illustrated in this paper by showing the relationship between probabilities of detection (P,), false
alarms (Py,), and signal-to-noise ratio (SNR). Monte Carlo simulations calculate detector performance and validate
metrics, receiving operating characteristic curves. Figure 1 shows the Probability of the detection with the Py, = 0.01 and
quantity of Monte Carlo models =1000 for different SNR (dB) values. A higher SNR increases the chance of finding.

Based on Figure 2, the null and alternative hypotheses become less strongly supported as the SNR increases. As a
result, false alarms increase detection odds. Increasing the number of false alarms increases the Probability of detecting
one spectrum sensing method over another. When using conventional energy detection methods, there is an increase in
false alarm probability of 5%; for the AWGN Channel, it is 1.8 times higher, and for the Rayleigh Channel, it is 0.8 times
higher. With cyclic prefix-based spectrum sensing, the AWGN Channel can be improved by 1.48 times and the Rayleigh
Channel by 1.36 times with a 5% false alarm rate increase.

Figure 3 shows complementary ROC curves for AWGN and Rayleigh fading channels according to the different SNR
values for local spectrum sensing. Increased SNR decreases the likelihood of detecting AWGN and Rayleigh fading
channels if a fixed probability of false alarm is provided.
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FIGURE 1. Probability of detection versus number of samples.
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FIGURE 4. Energy detection using wiener filter.

Spectrum sensing method performance improves when the SNR increases, as shown in Figure 4. SNR increases by
5 dB, increases the Probability of detection for AWGN Channels by 0.8 times, and squaring operations increase the
Probability by 0.7 times for Rayleigh Channels by 0.8 times. An improvement of 0.4 times is observed on the AWGN
Channel, 0.3 times on the Rayleigh Channel, and 0.7 times on energy detectors.

5. CONCLUSION

This paper discusses particle swarm optimization (PSO) and energy-based spectrum sensing techniques. The Energy
Detection method is implemented using two operations. A ROC curve and a Probability of detection versus SNR plot
were used to evaluate Spectrum Sensing performance. Spectrum sensing based on cyclic prefixes is the most effective
method for fading channels and low signal-to-noise ratios. The proposed operation improves indicators of conventional
energy performance. Spectrum sensing based on cyclic prefixes is the most effective method for fading channels and low
signal-to-noise ratios.
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