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ABSTRACT: In this paper an algebraic structure namely flower has been considered. This paper presents the
notation of the direct product of two flowers and studied some of its basic properties. Then, this notation has been
generalized to a finite family of flowers. Furthermore, the notation of flower homomorphism has been also studied
with some of its properties. We proved some properties in view of these notations.
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1. INTRODUCTION
Many studies have been considered the notation of the direct product and homomorphism of several algebraic struc-

tures. For instance, the direct product of an algebraic structure namely Bitonic algebras has been introduced by Ozbal [1].
The author generalized this notation to any finite collection of Bitonic algebras. He also proved that a finite family of
Bitonic algebras is commutative if and only if each one of them is commutative. Furthermore, the author presented
the homomorphism of the Bitonic algebras and investigated some related results about it. Setiani et. al [2] presented
the concept of the direct product of BP-algebras and studied some of its properties. The authors extended this concept
to a finite family of BP-algebras. Besides that, they proved the commutativity property of the direct product of BP-
algebras. Moreover, they discussed the notation of the homomorphism in view of the concept of the direct product
of BP-algebras. They showed some results about this notation and generalized these results to a finite family of BP-
homomorphism. In addition, the notation of the direct product has been also studied for some other algebraic structures.
For example, it has been provided for B-algebras by Angeline et. al [3] and for BG-algebras by Widianto et. al [4]. The
dirct product of BF-algebras has been introduced by Teves and Endam [5]. Angeline et. al [6] studied some mappings
on the direct product of B-algebras. On the other hand, algebraic structures namely Flower, Garden and Farm have been
introduced by Al-lahham [7]. He investigated some properties of these algebraic systems such as the commutativity
property and the associativity property. Some of these algebraic systems have been extended by Atteya and Ressan [8].
They proved some results related to flower and garden such as the commutativity and some other properties. Also they
determined some necessary and sufficient conditions for the structure (T, >) to be flower. Motivated by the works of
the previous researchers, in this article we provided the concept of the direct product of Flower and the notation of the
Flower homomorphism and studied some of their properties. This paper is structured as follows. In section two, some
basic concepts that are needed in this research are stated. In section three, the main results of this paper are given. The
conclusions of this paper and some suggestions for future works have been presented in section four.

2. BASIC CONCEPTS
This section contains some basic concepts that are needed in this research which presented as follows.
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Definition 2.1 [7] Let T , Φ then the binary operation > on T is called ATL-law if for anyx, y, z ∈ T we have X ∗ (y ∗ z) =

z ∗ (y ∗ x).
Definition 2.2 [7] A pair (T, >) is called Flower if the axioms bellow are holds

1. x ∗ (y ∗ z) = z ∗ (y ∗ x),∀x, y, z ∈ T
2. ∀x ∈ T∃e ∈ T (right identity of T ) such that x ∗ e = x.
3.x ∗ x = e (right invers).

Definition 2.3 [7] LetΦ , Q ⊆ T then Q is sub-flower if it’s a Flower with the binary operation of T .
Proposition 2.1 [7] Let(T, >) be a Flower. Then, (y ∗ z) ∗ x = (y ∗ x) ∗ z for any x, y, z ∈ T.
Proposition 2.2 [7] Let(T, >) be a Flower. Then, the points below are equivalent

1. TIs Lahhmian group
2. T Has identity
3. T Is abelian
4. T Is an associative

Theorem 2.1 [8] Every flower is commutative.

3. MAIN RESULTS
This section deals with the notations of the direct product and homomorphism of flower. We start with the following

definition.
Definition 3.1 Let (T1,>) and (T2, �) be two flowers. We define the direct product of T1 and T2 as a structure (T1 ×T2, �)
such that all the points below are fulfilled.

1. (x1, x2) ⊗ ((y1, y2) ⊗ (z1, z2)) = (z1, z2) ⊗ ((y1, y2) ⊗ (x1, x2)) for any (x1, x2) , (y1, y2) , (z1, z2) ∈ T1 ×T2. .
2. For any (X1, X2) ∈ T1 × T2 there exist (e1, e2) ∈ T1 × T2 such that (X1, X2) � (e1, e2) = (X1, X2) where (e1, e2) is the

right identity of T1 × T2.
3. For any (x1, x2) ∈ T1 ×T2 we have (x1, x2) ⊗ (x1, x2) = (e1, e2)

Theorem 3.1 A structures (T1,>) and (T2, �) are flowers iff (T1 × T2, �) is a flower.
Proof: Suppose that (T1,>) and (T2, �) are flowers to show that (T1 × T2, �) is a flower. Since(T1,>) and (T2, �) are
flowers, then for each X1, y1, z1 ∈ T1 and X2, y2, z2 ∈ T2 we have the following points (1) (X1 > (y1 > z1), X2 � (y2 � z2)) =

(z1> (y1>X1), z2 � (y2 �X2)). This gives us that (X1, X2)� ((y1> z1), (y2 � z2)) = (z1, z2)� ((y1>X1), (y2 �X2)) which implies
that (X1, X2) � ((y1, y2) � (z1, z2)) = (z1, z2) � ((y1, y2) � (X1, X2)) for any (X1, X2), (y1, y2), (z1, z2) ∈ T1 × T2. (2) From the
assumption, for any X1 ∈ T1 and X2 ∈ T2 there exist e1 ∈ T1 and e2 ∈ T2 such that X1 > e1 = X1 and X2 � e2 = X2. That is
mean (X1, X2) � (e1, e2) = (X1, X2) which gives that (e1, e2) is the right identity of T1 × T2. (3) Again from the assumption
we have X1 > X1 = e1 and X2 � X2 = e2.That is mean (X1, X2) � (X1, X2) = (e1, e2) for any (X1, X2) ∈ T1 × T2. Therefore,
(T1 × T2, �) is a flower. Conversely, let (T1 × T2, �) be a flower to prove that (T1,>) and (T2, �) are flowers. Since
(T1 ×T2, �) is a flower, then we have the following points (1) (X1, X2)� ((y1, y2)� (z1, z2)) = (z1, z2)� ((y1, y2)� (X1, X2))
for all (X1, X2), (y1, y2), (z1, z2) ∈ T1×T2. This gives that (X1, X2)� ((y1> z1), (y2 � z2)) = (z1, z2)� ((y1>X1), (y2 �X2)) =⇒

(X1 > (y1 > z1), X2 � (y2 � z2)) = (z1 > (y1 > X1), z2 � (y2 � X2)). That is mean X1 > (y1 > z1) = z1 > (y1 > X1) and
X2 � (y2 � z2) = z2 � (y2 �X2) for all X1, y1, z1 ∈ T1 and X2, y2, z2 ∈ T2. (2) Since (e1, e2) is the right identity of T1 ×T2, then
we have (X1, X2)�(e1, e2) = (X1, X2) implies (X1>e1, X2�e2) = (X1, X2) which gives X1>e1 = X1 and X2�e2 = X2 for any
X1 ∈ T1 and X2 ∈ T2. (3) Also from the assumption we have that (X1, X2) � (X1, X2) = (e1, e2) for any (X1, X2) ∈ T1 × T2.
That is mean (X1 > X1, X2 � X2) = (e1, e2) which gives that X1 > X1 = e1 and X2 � X2 = e2 for any X1 ∈ T1 and X2 ∈ T2.
Therefore, (T1,>) and (T2, �) are flowers.
Corollary 3.1 The direct product of finite family of flowers is a flower.
Theorem 3.2 A system (T1 × T2, �) is an abelian iff (T1,>) and (T2, �) are abelian.
Proof: Let (T1 × T2, �) is an abelian then for any (X1, X2), (y1, y2) ∈ T1 × T2 we have that (X1, X2) � (y1, y2) = (y1, y2) �
(X1, X2) =⇒ (X1>y1, X2 �y2) = (y1>X1, y2 �X2). This gives that X1>y1 = y1>X1 and X2 �y2 = y2 �X2 which proved that
(T1,>) and (T2, �) are abelian. Conversely, let (T1,>) and (T2, �) are abelian, then for any X1, y1 ∈ T1 and X2, y2 ∈ T2 we
have X1>y1 = y1>X1 and X2 �y2 = y2 �X2. This implies that (X1>y1, X2 �y2) = (y1>X1, y2 �X2) =⇒ (X1, X2)� (y1, y2) =

(y1, y2) � (X1, X2) which proved (T1 × T2, �) is an abelian.
Theorem 3.3 A finite intersection of flowers is a flower.
Proof: Let {(Ti,>) : i = 1, · · · , v} be a finite family of flowers to show that {(∩Ti,>) : i = 1, · · · , v} is form a flower. Let
Xi, yi, zi ∈

⋂v
i=1 (T i,>), then Xi, yi, zi ∈ (T i,>) for all i = 1, · · · , v. Since (Ti,>) is a flower for any i = 1, · · · , v, then we

have Xi > (yi > zi) = zi > (yi > Xi) for any i = 1, · · · , v which gives that condition one is hold. Since Xi ∈
⋂v

i=1 (T i,>)
then Xi ∈ (T i,>) for all i = 1, · · · , v. Since (Ti,>) is a flower for any i = 1, · · · , v, there exist a right identities ei ∈ (T i,>)
for all i = 1, · · · , v such that Xi > ei = Xi for any i = 1, · · · , v. Thus,

⋂v
i=1 (T i,>) has a right identity. Finally, we have
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Xi ∈
⋂v

i=1 (T i,>) which implies Xi ∈ (T i,>) for all i = 1, · · · , v. Since (Ti,>) is a flower for any i = 1, · · · , v, then we have
Xi > Xi = ei for any i = 1, · · · , v. Thus, condition three is proved. Therefore, {(∩Ti,>) : i = 1, · · · , v} is a flower.
Corollary 3.2 The finite intersection of a finite direct product of flowers is a flower.
Proof: Let {(Ti,>) : i = 1, · · · , v} be a finite family of flowers. By Corollary 3.1, (

∏v
i=1 T i,>) is a flower. By Theorem 3.3,(⋂v

i=1 T i,>
)

is a flower. Thus, (∩
∏v

i=1 T i,>) = (
∏v

i=1 ∩T i,>) which is flower. Therefore, as required.
Theorem 3.4 Let (T1 × T2, �) be a flower. Then, for each (X1, X2), (y1, y2) ∈ T1 × T2, the following points are holds.

1. (X1, X2) � ((X1, X2) � (y1, y2)) = (y1, y2).
2. (y1, y2) � (X1, X2) = (e1, e2) � ((X1, X2) � (y1, y2)).
3. (e1, e2) � ((X1, X2) � (y1, y2)) = ((e1, e2) � (X1, X2)) � ((e1, e2) � (y1, y2)).
4. (X1, X2) � (y1, y2) = (X1, X2)⇐⇒ (y1, y2) = (e1, e2).
5. (X1, X2) � (y1, y2) = (e1, e2)⇐⇒ (y1, y2) = (X1, X2).
6. ((X1, X2) � (y1, y2)) � (X1, X2) = (e1, e2) � (y1, y2).
7. ((X1, X2) � (e1, e2)) � (X1, X2) = ((X1, X2) � (X1, X2)) = (e1, e2).
8. (X1, X2) � ((X1, X2) � (e1, e2)) = ((X1, X2) � (X1, X2)) = (e1, e2).

Proof: (1) (X1, X2) � ((X1, X2) � (y1, y2)) = (X1, X2) � ((X1 > y1, X2 � y2)) =

(X1 > (X1 > y1), X2 � (X2 � y2))
= (y1 > (X1 > X1), y2 � (X2 � X2)) (by ATL-law)
= (y1 > e1, y2 � e2)
= (y1, y2).
(2) (e1, e2) ⊗

(
(x1, x2) ⊗

(
y1, y2

))
= (e1, e2) ⊗

((
x1 ∗ y1, x2 � y2

))
= (e1 > (X1 > y1), e2 � (X2 � y2))
= (y1 > (X1 > e1), y2 � (X2 � e2)) (by ATL-law)
= (y1 > X1, y2 � X2) (as e1, e2 are right identities)
= (y1, y2) � (X1, X2).
(3) ((e1, e2) � (X1, X2)) � ((e1, e2) � (y1, y2))
= (e1 > X1, e2 � X2) � (e1 > y1, e2 � y2)
=

(
(e1 > X1) > (e1 > y1), (e2 � X2) � (e2 � y2)

)
=

(
e1 > ((X1 > e1) > y1), e2 � ((X2 � e2) � y2)

)
(by Proposition 2.2)

=
(
y1 > ((X1 > e1) > e1), y2 � ((X2 � e2) � e2)

)
(by ATL-law)

=
(
y1 > (X1 > e1), y2 � (X2 � e2)

)
=

(
e1 > (X1 > y1), e2 � (X2 � y2)

)
(by ATL-law)

= (e1, e2) � (X1 > y1, X2 � y2)
= (e1, e2) � ((X1 > X2) � (y1 � y2)).
(4) Let (x1, x2) ⊗ (y1, y2) = (x1, x2)
=⇒ (X1 > y1, X2 � y2) = (X1, X2). That is mean X1 > y1 = X1 and X2 � y2 = X2 .This gives that y1 = e1 and y2 = e2

which implies that (y1, y2) = (e1, e2). Conversely, let (y1, y2) = (e1, e2) then y1 = e1 and y2 = e2. Left multiply by X1 and
X2 respectively we get X1 > y1 = X1 > e1 and X2 � y2 = X2 � e2. Since e1 and e2 are the right identities, then X1 > y1 = X1
and X2 � y2 = X2 which implies that (X1 > y1, X2 � y2) = (X1, X2) =⇒ (X1, X2) � (y1, y2) = (X1, X2).

(5) Let (X1, X2)� (y1, y2) = (e1, e2) then (X1 > y1, X2 � y2) = (e1, e2). That is mean X1 > y1 = e1 and X2 � y2 = e2. Right
multiply by y1 and y2 respectively, we have X1 > y1 > y1 = e1 > y1 and X2 � y2 � y2 = e2 � y2which implies X1 = e1 > y1 and
X2 = e2 � y2. By Theorem 2.1, then X1 = y1 and X2 = y2 which gives (y1, y2) = (X1, X2). Conversely, let (y1, y2) = (X1, X2)
then X1 = y1 and X2 = y2. Left multiply by y1 and y2 respectively, we get y1>X1 = y1>y1 and y2�X2 = y2�y2. This implies
that y1 > X1 = e1 and y2 � X2 = e2 which gives (y1 > X1, y2 � X2) = (e1, e2). By Theorem 2.1, (X1, X2) � (y1, y2) = (e1, e2).

(6) ((x1, x2) ⊗ (y1, y2)) ⊗ (x1, x2) = (x1 ∗ y1, x2 ◦ y2) ⊗ (x1, x2)
= (X1 > (y1 > X1), X2 � (y2 � X2))
= (X1 > X1 > y1, X2 � X2 � y2) (by Theorem 2.1)
= (e1 > y1, e2 � y2)
= (e1, e2) � (y1, y2).
(7) ((x1, x2) ⊗ (e1, e2)) ⊗ (x1, x2) = (x1 ∗ e1, x2 � e2) ⊗ (x1, x2)
= (X1, X2) � (X1, X2)
= (X1 > X1, X2 � X2)
= (e1, e2).
(8) (x1, x2) ⊗ ((x1, x2) ⊗ (e1, e2)) = (x1, x2) ⊗ (x1 ∗ e1, x2 � e2)
= (X1, X2) � (X1, X2)
= (e1, e2).
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Theorem 3.5 Let (T1 × T2, �) be a flower. Then, for each (X1, X2), (y1, y2), (z1, z2) ∈ T1 × T2, the following points are
holds.

1. ((X1, X2) � (y1, y2)) � ((X1, X2) � (z1, z2)) = (z1, z2) � (y1, y2).
2. (((X1, X2) � (y1, y2)) � ((X1, X2) � (z1, z2))

]
� ((z1, z2) � (y1, y2)) =

(e1, e2).
3. ((X1, X2) � ((y1, y2) � (X1, X2))

]
� ((X1, X2) � (y1, y2)) = (X1, X2).

4. ((X1, X2) � (y1, y2)) � (z1, z2) = (X1, X2) � ((y1, y2) � ((e1, e2) � (z1, z2))
]
.

Proof: (1) ((X1, X2) � (y1, y2)) � ((X1, X2) � (z1, z2))
= (X1 > y1, X2 � y2) � (X1 > z1, X2 � z2)
= (X1 > y1) > (X1 > z1), (X2 � y2) � (X2 � z2)
= X1 > ((y1 > X1) > z1), X2 � ((y2 � X2) � z2)
= z1 > ((y1 > X1) > X1), z2 � ((y2 � X2) � X2) (by ATL-law)
= (z1 > y1, z2 � y2)
= (z1, z2) � (y1, y2).
(2)

[
((x1, x2) ⊗ (y1, y2)) ⊗ ((x1, x2) ⊗ (z1, z2))

]
⊗ ((z1, z2) ⊗ (y1, y2)) =

(X1 > y1, X2 � y2) � (X1 > z1, X2 � z2) � (z1 > y1, z2 � y2) =

(X1 > y1 > X1 > z1 > z1 > y1, X2 � y2 � X2 � z2 � z2 � y2)
= X1 > ((y1 > X1) > y1), X2 � ((y2 � X2) � y2)
= y1 > y1 > X1 > X1, y2 � y2 � X2 � X2 (by ATL-law)
= (e1, e2).
(3)

[
(x1, x2) ⊗

((
y1, y2

)
⊗ (x1, x2)

)]
⊗

(
(x1, x2) ⊗

(
y1, y2

))
=

(X1, X2) � (y1 > X1, y2 � X2) � (X1 > y1, X2 � y2)
= (X1 > y1 > X1 > X1 > y1, X2 � y2 � X2 � X2 � y2)
= (X1 > y1 > y1, X2 � y2 � y2)
= (X1, X2).
(4) (X1, X2) � ((y1, y2) � ((e1, e2) � (z1, z2))

]
= (X1, X2) � (y1 > e1 > z1, y2 � e2 � z2) = (X1 > y1 > z1, X2 � y2 � z2) =

(X1 > y1, X2 � y2) � (z1, z2) = ((X1, X2) � (y1, y2)) � (z1, z2)
Corollary 3.3 Let (T1 × T2, �) be a flower. Then,

1. (T1 × T2, �) has unique right identity.
2. For each (x1, x2) ∈ T1 ×T2 has unique right inverse

Proof: (1) Let (e1, e2) ,
(
e
′

1, e
′

2

)
be two right identities of T1 × T2. If (e1, e2)is the right identity then for any (X1, X2) ∈

T1 × T2 we have (X1, X2) � (e1, e2) = (X1 > e1, X2 � e2) = (X1, X2). Also, if
(
e
′

1, e
′

2

)
is the right identity then we have

(X1, X2)�
(
e
′

1, e
′

2

)
=

(
X1 > e

′

1, X2 � e
′

2

)
= (X1, X2). That is mean (X1, X2)�(e1, e2) = (X1, X2)�

(
e
′

1, e
′

2

)
=⇒ (e1, e2) =

(
e
′

1, e
′

2

)
which proved the uniqueness of the right identity. By the same way we can prove point two.
Theorem 3.6 Let (T1 × T2, �) be a flower. Then, for each (X1, X2), (y1, y2), (z1, z2) ∈ T1 × T2 we have ((y1, y2) � (z1, z2))�
(X1, X2) = ((y1, y2) � (X1, X2)) � (z1, z2).
Proof: ((y1, y2) � (z1, z2)) � (X1, X2) = (y1 > z1, y2 � z2) � (X1, X2) = (y1 > z1 > X1, y2 � z2 � X2). By Theorem 2.1, we have
= (y1 > X1 > z1, y2 � X2 � z2) = (y1 > X1, y2 � X2) � (z1, z2) = ((y1, y2) � (X1, X2)) � (z1, z2). Therefore, as required.
Theorem 3.7 Let (T1 × T2, �) be a flower. If (X1, X2) � (y1, y2) = (z1, z2) � (W1,W2) then (y1, y2) = (z1, z2) for any
(X1, X2) , (y1, y2) , (z1, z2) , (W1,W2) ∈ T1 × T2.
Proof: We have (X1, X2) � (y1, y2) = (z1, z2) � (W1,W2) that is mean (X1 > y1, X2 � y2) = (z1 >W1, z2 �W2). From this we
get X1 > y1 = z1 >W1 and X2 � y2 = z2 �W2. We take the first equation which is X1 > y1 = z1 >W1. Left multiple by X1 we
obtain X1 > (X1 > y1) = X1 > (z1 >W1). Using ATL-law, we have y1 > (X1 > X1) = W1 > (z1 > X1) =⇒ y1 = (W1 > z1)> X1.
By Proposition 2.1, we get y1 = (W1 > X1) > z1. Replace W1 by X1 we have y1 = X1 > (X1 > z1). Using ATL-law, we have
y1 = z1 > (X1 > X1) =⇒ y1 = z1. By the same way we can prove that y2 = z2. Therefore, (y1, y2) = (z1, z2).
Theorem 3.8 If (T1 × T2, ·) be an abelian group. Then, (T1 × T2, �) is a flower such that (X1, X2) � (y1, y2) = (X1, X2) ·
(y1, y2)−1 for any (X1, X2) , (y1, y2) ∈ T1 × T2.
Proof: (1) For any (X1, X2) , (y1, y2) , (z1, z2) ∈ T1 × T2 then

(X1, X2) � (y1, y2) � (z1, z2) = (X1, X2) �
(
(y1, y2) · (z1, z2)−1

)
= (X1, X2) ·

(
(y1, y2) · (z1, z2)−1

)−1

= (X1, X2) ·
(
(z1, z2) · (y1, y2)−1

)
= (X1, X2) ·

(
(z1, z2) · (y−1

1 , y
−1
2 )

)
= (X1, X2) ·

(
z1 · y−1

1 , z2 · y−1
2

)
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= (X1 · z1) · y−1
1 , (X2 · z2) · y−1

2
= (z1 · X1) · y−1

1 , (z2 · X2) · y−1
2 ( by assumption)

= (z1, z2) ·
(
X1 · y−1

1 , X2 · y−1
2

)
= (z1, z2) ·

(
(X1, X2) ·

(
y−1

1 , y
−1
2

))
= (z1, z2) ·

(
(X1, X2) · (y1, y2)−1

)
= (z1, z2) ·

(
(y1, y2) · (X1, X2)−1

)−1

= (z1, z2) �
(
(y1, y2) · (X1, X2)−1

)
= (z1, z2) � ((y1, y2) � (X1, X2)).
(2) For any (X1, X2) ∈ T1×T2 there exist (e1, e2) ∈ T1×T2 such that (X1, X2)� (e1, e2) = (X1, X2) · (e1, e2)−1 = (X1, X2) ·(

e−1
1 , e

−1
2

)
= (X1, X2) · (e1, e2) = (X1 · e1, X2 · e2) = (X1, X2). (3) For any (X1, X2) ∈ T1 × T2 we have (X1, X2) � (X1, X2) =

(X1, X2) · (X1, X2)−1 = (X1, X2) ·
(
X−1

1 , X
−1
2

)
=

(
X1 · X−1

1 , X2 · X−1
2

)
= (e1, e2). Therefore, (T1 × T2, �) is a flower.

Definition 3.2 Let (T1,>) and (T2, �) be two flowers. We define the flowers homomorphism as a mapping f : T1−→ T 2
in which f (X > y) = f (X) � f (y) for any X, y ∈ T1.
Remark 3.1 Let f : T1−→ T 2 be a flowers homomorphism. If f is an onto, then it’s called is an epimorphism, if f is (1-1)
then it’s called monomorphism and if f is bijection then it’s called isomorphism.
Theorem 3.9 The homomorphic image of a flower is a flower.
Proof: Let f : (T1,>) −→ (T2, �) be a flowers homomorphism to show that f (T1) is a flower. Let X1, y1, z1 ∈ T1 then
f (X1) , f (y1) , f (z1) ∈ f (T 1). Since X1, y1, z1 ∈ T1 and (T1,>) is a flower, then we get X1 > (y1 > z1) = z1 > (y1 > X1).
Since f be a homomorphism, then f (X1) > f (y1 > z1) = f (z1) > f (y1 > X1) which implies f (X1) > ( f (y1) > f (z1)) =

f (z1) > ( f (y1) > f (X1)) = f (X1) � ( f (y1) � f (z1)) = f (z1) � ( f (y1) � f (X1)). Thus, condition one is hold. Since X1 ∈ T1
and (T1,>) is a flower, then there exist a right identity e1 ∈ T1 such that X1 > e1 = X1. By homomorphism of f , we
have f (X1) � f (e1) = f (X1) =⇒ f (X1 > e1) = f (X1) which proves condition two. Finally, since X1 ∈ T1 and (T1,>) is a
flower, then we have X1>X1= e1. This gives that f (X1>X1)= f (e1) =⇒ f (X1)� f (X1)= f (e1). So, condition three is hold.
Therefore, f (T1) is a flower.
Corollary 3.4 Let f : (T1,>) −→ (T2, �) be a flowers homomorphism. If e1 is the right identity of T1, then f (e1) is the
right identity of T2.
Proof: Let e1 be a right identity of T1, then for any X1 ∈ T1 we have X1 > e1 = X1 =⇒ f (X1 > e1) = f (X1) implies
f (X1) � f (e1) = f (X1) which gives that f (e1) is the right identity of T2.
Theorem 3.10 Let f : (T1,>) −→ (T2, �) be a flowers homomorphism. Then,

1. If Q is a sub-flower of T1, then f(Q is a sub-flower of T2

2. If Q is a sub-flower of T2, then f −1(Q) is a sub-flower of T1

Proof: (1) Let Q be a sub-flower of T1, then by Definition 2.3, we have Q is a flower. By Theorem 3.9, f (Q)is a flower
of T2. (2) Let f −1 (Q) = {X1 ∈ T1 : f (X1) ∈ Q}. That is mean f (X1) ∈ Q ⇐⇒ X1 ∈ f −1 (Q). Since Q is a sub-flower
of T2, then by Definition 2.3, Q is a flower. This gives us that if f (X1), f (y1), f (z1) ∈ Q where X1, y1, z1 ∈ f −1 (Q)
we have that f (X1) � ( f (y1) � f (z1)) = f (z1) � ( f (y1) � f (X1)) =⇒ X1 > (y1 > z1) = z1 > (y1 > X1). Thus condition
one is hold. For condition two, if f (X1) ∈ Q, then by Corollary 3.4, there exist f (e1) ∈ T2 such that f (X1) � f (e1) =

f (X1) =⇒ f (X1 > e1) = f (X1) which gives that X1 > e1 = X1. Finally, if f (X1) ∈ Q then by Corollary 3.3, we get
f (X1) � f (X1) = f (e1) =⇒ X1 > X1 = e1 where e1 is the right identity of T1. Therefore, f −1(Q) is a flower.
Corollary 3.5 The homomorphic image of a commutative flower is a commutative.
Proof: Let f : (T1,>) −→ (T2, �) be a flowers homomorphism and let (T1,>) be a commutative flower, then for any
X1, y1 ∈ T1 we have X1 > y1 = y1 > X1. By homomorphism we get f (X1 > y1) = f (y1 > X1) =⇒ f (X1) � f (y1) =

f (y1) � f (X1) where f (X1) , f (y1) ∈ f (T1).
Theorem 3.11 Let (T1,>) and (T2, �) be two flowers with their right identities. Then,

1. T1 � T1 × {e2}

2. T2 � T2 × {e1}

Proof: (1) Let f ∗ : T1 −→ T1 × {e2} given by f ∗ (X1) = (X1, e2) , X1 ∈ T1. Then, we have to prove f ∗ is well-defined.
If X1 = X

′

1 then (X1, e2) =
(
X
′

1, e2

)
= f ∗ (X1) = f ∗

(
X
′

1

)
where X

′

1 ∈ T1. This proved that f ∗ is well-defined. Now,

f ∗
(
X1 > X

′

1

)
= f ∗

(
X1 > X

′

1, e2

)
= f ∗ (X1, e2) � f ∗

(
X
′

1, e2

)
= f ∗ (X1) � f ∗

(
X
′

1

)
which proved f ∗ is homomorphism. Next,

if f ∗ (X1) = f ∗
(
X
′

1

)
=⇒ (X1, e2) =

(
X
′

1, e2

)
⇐⇒ X1 = X

′

1 which implies f ∗ is (1-1). Finally, for any X1 ∈ T1 we have
(X1, e2) ∈ T1 × {e2} such that f ∗ (X1) = (X1, e2) which gives f ∗ is an onto. Hence, f ∗ is an isomorphism. Therefore,
T1 � T1 × {e2}. Point two can be proved by the same way.
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4. CONCLUSION
As a conclusion, this article proved the direct product of two Flowers is a Flower. Also, its generalization is form

a flower. Moreover, this study proved that the direct product of two Flowers is commutative iff each one of them is
commutative. Also its showed that the homomorphic image of a flower is a flower and the image (pre-image) of a sub-
flower is also sub-flower. Also some related results concerned on the direct product and homomorphism of flower have
been also discussed. For future work, we suggest the following works (i) some generalizations of the direct product and
homomorphism of flower. (ii) the direct product of infinite flower
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