Wasit Journal of Computer and Mathematics Science

Journal Homepage: https://wjcm.uowasit.edu.iq/index.php/WJCM e-ISSN: 2788-5879 p-ISSN: 2788-5879

On θg^{**} - Closed Sets in Topological Spaces

Ahmed Hussain Wajaean^{1,*0} and Ali Khalaf Hussain¹

¹College of Education for Pure Sciences, Wasit University, Iraq

*Corresponding Author: Ahmed Hussain Wajaean

DOI: https://doi.org/10.31185/wjcm.124

Received: March 2023; Accepted: June 2023; Available online: June 2023

ABSTRACT: In this paper we have introduced a new class of closed in topological spaces called θg^{**} -closed sets and study some of its properties . Further we introduce the concept θg^{**} -continuous functions , θg^{**} -irresolute functions . As an application we introduce two news paces namely . $T\theta^{**}$ -space, $^{**}T\theta$ - space .Further, θg^{**} -continuous, and θg^{**} -irresolute mappings are also introduced and investigated .

Keywords: θ g ** closed sets, θ g ** continuous functions, θ g ** irresolute functions, θ d ** space, ** θ g ** space

1. INTRODUCTION

In 1970, Levine [1] presented the g-closed set class. In 1994, Maki.et.al [2] defined αg - closed sets. In 1990, Arya and Tour [3] introduced the concept of gs-closed sets. The terms gsp-closed sets, gpr-closed sets, and rg-closed sets were first introduced by Dontchey [4], Gnanambal [5], Palaniappan, and Rao [6]. Veerakumar [7] introduced g*-closed sets in 1991.J.Dontchey [4] introduced gsp-closed set in 1995. Levine [8] $T_{1/2}$ -space, Tb-space, and T_b - space were all introduced by Devi et al. [9,10] [9]. Veerakumar [7]introduced $T_{1/2}$ ** - space. This essay's goal is to introduce and study the notions of θg^{**} -closed sets, θg^{**} -continuous map, θg^{**} -irresolute maps, $T\theta^{**}$ -space, ** $T\theta$ - space

2. BASIC CONCEPTS

Definition 1.1

Let (X, τ) be a topological space. A subset B of the space X is called

- 1) A generalized closed set (brifly , g closed) [1]if $cl(B) \subseteq V$, every time $B \subseteq V$ and V are open .
- 2) A semi generalized closed set (brifly ,sg closed) [10] if $scl(B) \subseteq V$, every time $B \subseteq V$ and V was semi open .
- 3) A generalized semi-closed set (brifly, gs closed) [11] if $Scl(B) \subseteq V$, every time $B \subseteq V$ and V are open.
- 4) A generic semi preclosed set (brifly , gsp closed) [12] if Spcl (B) \subseteq V, every time B \subseteq V and V are open .
- 7) regular generic closed set (brifly , r– g closed) [6] if $cl(B) \subseteq V$, every time $B \subseteq V$ and V are regular open

Definition 1.2

A topological space (X, τ) is said to be

- 1) a $T_{1/2}$ space [1] if every g closed set in it is closed.
- 2) a T_b space [9] if every gs closed set in it is closed.
- 3) a T_d space [9] if every gs closed set in it is g closed.
- 4) an αT_d space [13] if every αg closed set in it is g closed.
- 5) an αT_b space [13] if every αg closed set in it is closed.
- 6) a $T_{1/2}^*$ space [7] if every g^* closed set in it is closed .
- 7) $T_{1/2}$ space [7] if every g closed set in it is g^* closed .

3. θG^{**} -CLOSED SETS

In this section we introduce and study the notion of θg^{**} -closed sets in topological spaces and obtain some of its basic properties .

Definition 2.1

A subset A of atopological space (X, τ) is called θg^* -closed sets if $Cl\theta(A) \subseteq U$ and U is g - open in (X, τ).

Definition 2.2

A subset A of atopological space (X, τ) is called θg^{**} -closed sets if $Cl\theta(A) \subseteq U$ and U is g^{*} - open in (X, τ).

Theorem 2.3

Every r –closed set is θg^{**} -closed sets .

Proof:

Suppose that A be a r –closed set in X.

Let U be a g^* -open set such that $A \subseteq U$.

Since A is r –closed, then we have $rcl(A) = A \subseteq U$.

But $Cl\theta(A) \subseteq rcl(A) \subseteq U$.

Therefore $Cl\theta(A) \subseteq U$.

Hence A is a θg^{**} -closed set.

But the convers of Theorem (2.3) is not true.

Example 2.4

```
Let X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}, \{2\}, \{1,2\}, \{2,3\}\},
```

r-closed = {X, \emptyset , (2,3}, {1,3}} and

 θg^{**} -closedset = {X, \emptyset , (1}, (1,3}, {2,3}}.

Let $A = \{1\}.$

Then the subset A is θg^{**} -closed but not a r -closed set .

Theorem 2.5

The union of two θg^{**} -closed subsets are θg^{**} -closed.

Proof:

Let A and B any two θg^{**} -closed sets in X.

Such that $A \subseteq U$ and $B \subseteq U$ where U is g^* -open in X and so

 $A \cup B \subseteq U$.

Since A and B are θg^{**} -closed.

 $A\subseteq Cl\theta(A) \text{ and } B\subseteq Cl\theta(B) \text{ and hence } A\cup B\subseteq Cl\theta(A)\cup Cl\theta(B)\subseteq Cl\theta(A\cup B) \ .$

Thus $A \cup B$ is θg^{**} -closed set in (X, τ) .

Example 2.6

Let
$$X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{2, \{3\}, \{2, 3\}\}\}$$
 and

$$\theta g^{**}$$
-closed = {X, , \emptyset , (1}, (3}, (1, 2}, {1, 3}).

Let A = {1} and B = {3}, then A \cup B = (1,3} is also θ g**-closed.

Theorem 2.7

The intersection of two θg^{**} -closed subset are θg^{**} -closed.

Proof:

Let A and B any two θg^{**} -closed sets in X.

Such that $A \subseteq U$ and $B \subseteq U$ where U is g^* -open in X and so

 $A \cap B \subseteq U$.

Since A and B are θg^{**} -closed.

 $A\subseteq Cl\theta(A) \text{ and } B\subseteq Cl\theta(B) \text{ and hence } A\cap B\subseteq Cl\theta(A)\cap Cl\theta(B)\subseteq Cl\theta(A\cap B) \ .$

Thus $A \cap B$ is θg^{**} -closed set in (X, τ) .

Example 2.8

Let
$$X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{2\}, \{3\}, \{2,3\}, \{1,2\}\}$$
 and

 θg^{**} -closed = {X, \emptyset , (1}, (3}, (1, 2}, {1, 3}}.

Let A = $\{1,2\}$ and B = $\{1,3\}$, then A $\cap B = \{1\}$ is also θg^{**} -closed.

Proposition 2.9

Every θg^{**} -closed set is gpr-closed.

Proof:

Let $A \subseteq U$ where U is regular open .

Then U is θg^* -open.

Since A is θg^{**} - closed, $cl(A) \subseteq U$,

```
which implies pcl(A) \subseteq Cl(A) \subseteq U.
  Therefore A is gpr - closed.
  But the convers of (Propostion 2.9) is not true.
Example 2.10
  Let X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{2\}, \{1,2\}\},\
  gpr-closed = \{X, \emptyset, (1), (2), (3), (1,2), (2,3), \{1,3\}\} and
  \theta g^{**}-closedset = {X, \emptyset, (3}, (1,3}, {2,3}}.
  Let A = {1}. Then the subset A is gpr -closed but not a \theta g^{**} -closed set .
Proposition 2.11
  Every \theta g^{**}- closed set is gs – closed.
Proof:
  Let A be a \theta g^{**}-closed set .
  Let A \subseteq U, and U be open.
  Then cl(A) \subseteq U, since U is \theta g^*-open and A is \theta g^{**}-closed.
  But scl(A) \subseteq cl(A) \subseteq U.
  Hence A is gs-closed.
  But the convers of (Propostion 2.11) is not true.
Example 2.12
  Let X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{2\}, \{1,2\}\},\
  gs –closed = \{X, \emptyset, (2), (3), (1, 2), (2, 3), \{1, 3\}\} and
  \theta g^{**}-closedset = \{X, \emptyset, \{2, 3\}\}.
  Let A = \{1,2\}.
  Then the subset A is gs -closed but not a \theta g^{**} -closed set.
Proposition 2.13
```

Every θg^{**} - closed set is rg – closed.

Proof:

Let A be a θg^{**} -closed set.

Let $A \subseteq U$ and U be regular open.

Then U is θg^* -open and hence U is θg^* -open .

since A is θg^{**} -closed, $Cl(A) \subseteq U$.

Therefore A is rg – closed.

But the convers of (Proposition 2.13) is not true.

Example 2.14

```
Let X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{2\}, \{1,2\}\},\
rg –closed = \{X, \emptyset, (1), (2), (3), (1,2), (2,3), \{1,3\}\} and
\theta g^{**}-closedset = {X, \emptyset, (3}, (1,3}, {2,3}}.
Let A = \{1\}.
```

Then the subset A is rg -closed but not a θg^{**} -closed set.

Proposition 2.15

Every θg^{**} - closed set is g – closed.

Proof:

Let A be a θg^{**} -closed set

Let $A \subseteq U$ and U be open then U is θg^* open.

Since A is θg^{**} - closed , $Cl(A)\subseteq U$.

Therefore A is g - closed.

But the convers of (Propostion 2.15) is not true.

Example 2.16

Let
$$X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}, \{1, 2\}\},$$
 g-closed = $\{X, \emptyset, (2\}, (3\}, (1, 2\}, (2, 3\}, \{1, 3\}\}$ and θg^{**} -closedset = $\{X, \emptyset, \{2, 3\}\}$.
Let $A = \{1, 2\}$.

Then the subset A is gs -closed but not a θg^{**} -closed set .

Proposition 2.17

Every θg^{**} - closed set is gp – closed.

But the convers of (Proposition 2.17) is not true.

Example 2.22

```
Let X = \{1, 2, 3\}, \tau = \{X, \emptyset, \{2\}, \{1, 2\}\}, gp -closed = \{X, \emptyset, (2\}, (3\}, (1, 2\}, (2, 3\}, \{1, 3\}\} and \theta g^{**}-closedset = \{X, \emptyset, \{2, 3\}\}.
Let A = \{1, 2\}.
```

Then the subset A is gp - closed but not a θg^{**} -closed set.

4. θG^{**} -CONTINUOUS AND θG^{**} -IRRESOLUTE MAPS

Difinition 3.1

A function $(X, \tau) \to (Y, \mu)$ is called θg^{**} - countinuous if $f^{-1}(V)$ is a θg^{**} - closed set of (X, τ) for every closed set V of (Y, μ) .

Definition 3.2

A function $f: (X, \tau) \rightarrow (Y, \mu)$ is called θg – irresolute if $f^{-1}(V)$ is a θg – closed set of (X, τ) for every θg – closed set V of (Y, μ) .

Definition 3.3

A function $f:(X,\tau)\to (Y,\mu)$ is called θg^{**} – irresolute if $f^{-1}(V)$ is a θg^{**} – closed set of (X,τ) for every θg^{**} – closed set V of (Y,μ) .

Theorem 3.4

Every continuous map is θg^{**} - continuous .

Proof:

Let $f:(X,\tau) \to (Y,\mu)$ be continuous and let F be any closed set of Y.

Then $f^{-1}(F)$ is closed in X.

Since every closed set is θg^{**} - closed, $f^{-1}(F)$ is θg^{**} closed.

Therefore f is θg^{**} -continuous .

But the convers of (Theorem 3.4) is not true.

Example 3.5

Let
$$X = Y = \{ 1, 2, 3 \}$$
, $\tau = \{ X, \emptyset, \{ 1 \}, \{ 1, 2 \} \}$, $\mu = \{ Y, \emptyset, \{ 3 \} \}$, $f(X, \tau) \rightarrow (Y, \mu)$ is defined by $f(1) = 2$, $f(2) = 1$, $f(3) = 3$.

Then f is θg^{**} -continuous but not continuous.

Since for the closed set $\{1,2\}$ in Y.

 $f^{-1}(\{1,2\}) = \{1,2\}$ is θg^{**} -continuous but not continuous.

Theorem 3.6

Every θg^{**} - continuous function is rg –continuous.

Proof:

```
Let f: (X, \tau) \to (Y, \mu) be a \theta g^{**}- continuous function.
```

Let V be closed set of (Y, μ) .

Since f is θg^{**} - continuous , then $f^{-1}(V)$ is a θg^{**} - closed set in (X , τ).

Since every θg^{**} - closed set is rg –closed.

 $f^{-1}(V)$ is rg –closed set in (X, τ) .

Therefore f is rg -continuous.

But the convers of (Theorem 3.6) is not true.

Example 3.7

```
Let X = Y = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}, \{2\}, \{1,2\}\}, \mu = \{Y, \emptyset, \{3\}\}.
```

Let the function $f: (X, \tau) \rightarrow (Y, \mu)$ is defined by

$$f(1) = 2$$
, $f(2) = 1$, $f(3) = 3$.

Then f is rg –continuous but not θg^{**} -continuous .

Since for the closed set $\{1,2\}$ in Y.

 $f^{-1}(\{1,2\}) = \{1,2\}$ is rg –closed but not θg^{**} -closed set in (X, τ) .

Theorem 3.8

Every $\theta g^{**}\text{--}$ continuous function is gpr –continuous .

Proof:

```
Let f:(X,\tau)\to (Y,\mu) be a \theta g^{**} -continuous function .
```

Let V be closed set of (Y, μ) .

Since f is θg^{**} - continuous , then $f^{-1}(V)$ is a θg^{**} - closed set in (X , τ) .

By (proposition 4.1.) $f^{-1}(V)$ is gpr –closed set of (X, τ) .

the convers of the above (Theorem 3.8) is not true.

```
Example 3.9
   Let X = Y = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}, \{3\}, \{1,3\}\},
   \mu = \{ Y, \emptyset, \{2\} \}.
   Let the function f:(X,\tau) \rightarrow (Y,\mu) is defined by
   f(1) = 3, f(2) = 2, f(3) = 1.
   Then f is gpr –continuous but not \theta g^{**} -continuous .
   Since for the closed set \{1,3\} in Y.
   f^{-1}(\{1,3\}) = \{1,3\} is gpr –closed but not \theta g^{**} -closed set in (X, \tau).
 Theorem 3.10
   Every \theta g^{**}- continuous function is gs –continuous.
Proof
   Let f: (X, \tau) \to (Y, \mu) be a \theta g^{**}- continuous function.
   Let V be closed set of (Y, \mu).
   Since f is \theta g^{**}- continuous, then f^{-1}(V) is a \theta g^{**} - closed set in (X, \tau).
   Since every \theta g^{**} - closed set is gs –closed.
   f^{-1}(V) is gs –closed set in (X, \tau).
   Therefore f is gs -continuous.
   But the convers of (Theorem 3.10) is not true.
 Example 3.11
   Let X = Y = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}, \{1,3\}\}, \mu = \{Y, \emptyset, \{2\}, \{1,2\}\}.
   Let the function f:(~X~,\tau~)\to (~Y~,\mu~) be an identity function .
   Then f is gs –continuous but not \theta g^{**} -continuous .
   Since for the closed set \{1,3\} and \{3\} in Y.
   f^{-1}(\{1,3\}) = \{1,3\} and f^{-1}\{3\} = \{3\} is gs –closed but not \theta g^{**} -closed set in (X, \tau).
 Theorem 3.12
   Every \theta g^{**}- continuous function is gp –continuous.
Proof:
   Let f: (X, \tau) \to (Y, \mu) be a \theta g^{**} -continuous function .
   Let V be closed set of (Y, \mu).
   Since f is \theta g^{**} - continuous, then f^{-1}(V) is a \theta g^{**} - closed set in (X, \tau).
   By (proposition 4.1.) f^{-1}(V) is gp –closed set of (X, \tau).
   the convers of the above (Theorem 3.12) is not true.
 Example 3.13
   Let X = Y = \{1, 2, 3\}, \tau = \{X, \emptyset, \{1\}, \{1,2\}\},\
   \mu = \{ Y, \emptyset, \{1,3\} \}.
   Let the function f: (X, \tau) \rightarrow (Y, \mu) be an identity function .
   Then f is gp –continuous but not \theta g^{**} -continuous.
   Since for the closed set \{2\} in Y.
   f^{-1}(\{2\}) = \{2\} is gp –closed but not \theta g^{**} -closed set in (X, \tau).
 Theorem 3.14
   Every \theta g^{**} -irresolute is \theta g^{**} -continuous .
Proof:
   Let f:(X, \tau) \to (Y, \mu) be a \theta g^{**} -irresolute.
   Let V be a closed set of (Y, \mu).
   Then V is \theta g^{**} -closed and f^{-1}(V) is \theta g^{**} -closed .
   Since f is a \theta g^{**} -irresolute.
   Hence f is \theta g^{**} -continuous.
   the convers of the above (Theorem 3.14) is not true.
 Example 3.15
   Let X = Y = \{ 1, 2, 3 \}, \tau = \{ X, \emptyset, \{3\} \},
   \mu = \{ Y, \emptyset, \{1\}, \{2,3\} \}.
   Let the function f: (X, \tau) \rightarrow (Y, \mu) is defined by
   f(1) = 3, f(2) = 2, f(3) = 1.
   Then f is gpr –continuous but not \theta g^{**} -continuous .
   Since for the closed set \{1,3\} in Y.
   f^{-1}(\{1,3\}) = \{1,3\} is gpr –closed but not \theta g^{**} -closed set in (X, \tau).
```

Proposition 3.16

Every θg^* - continuous map is θg^{**} - continuous.

Proof

Let $f: (X, \tau) \to (Y, \mu)$ be θg^{**} - continuous .

let V be closed set of Y.

Then $f^{-1}(V)$ is θg^* - closed and hence by propositio (3.1.2)

it is θg^{**} - closed.

Hence f is θg^{**} - continuous.

But the convers of (Propostion 3.16) is not true.

Let $X = Y = \{ 1, 2, 3 \}, \tau = \{ \emptyset, X, \{ 1 \} \},$

 $\mu = \left\{ \varnothing \,, X \,, \left\{ \, 2 \, \right\} \, \right\} \,.$

Let $f: (X, \tau) \to (Y, \mu)$ be the identity map . $A = \{1, 3\}$ is closed in (Y, μ) and is θg^{**} - closed in (X, τ) but not θg^{*} - closed in (X, τ) .

Therefore f is θg^{**} - continuous but not θg^{*} - continuous .

5. APPLICATIONS OF θ G**-CLOSED SETS

Definition 4.1

A space (X, τ) is called a $T\theta^*$ - space if every θg^* - closed set is closed.

Definition 4.2

A space (X , τ) is called a $T\theta^{**}$ - space if every θg^{**} - closed set is closed.

Theorem 4.3

Every $T_{1/2}$ - space is $T\theta^{**}$ - space .

Proof:

Let (X , τ) be a $T_{1/2}$ – space .

Since every θg^{**} -closed set is g-closed, A is g-closed.

Since (X, τ) is a $T_{1/2}$ – space, A is closed.

Hence (X, τ) is a $T\theta^{**}$ - space.

But the convers of (theorem 4.3.4) is not true.

Example 4.4

Let $X = \{1, 2, 3, 4\}, \tau = (X, \emptyset, \{1\}, \{1, 2\})$.

 (X, τ) is a $T\theta^{**}$ - space but not a $T_{1/2}$ - space since $A = \{1, 3\}$ is g-closed but not closed and hence it is not a $T_{1/2}$ - space .

Hence a $T\theta^{**}$ - space need not be a $T_{1/2}$ – space

Theorem 4.5

Every T_b - space is a $T\theta^{**}$ - space.

the convers need of the above (Theorem 4.5) is not true .

Example 4.6

Let $X = \{1, 2, 3\}, \tau = (X, \emptyset, \{1\}, \{2\}, \{1, 2\}\})$.

 (X, τ) is a $T\theta^{**}$ - space but not a T_b - space since $A = \{1\}$ is

gs-closed but not closed and hence it is not a T_b - space.

Hence a $T\theta^{**}$ - space need not be a T_b – space.

Definition 4.7

A space (X , τ is called an ** $T\theta$ space if every θg **-closed set of

 (X, τ) is a θg^* -closed set.

Example 4.8

Let $X = \{1, 2, 3\}, \tau = (X, \emptyset, \{1\}, \{1, 2\})$.

 (X, τ) is **T θ – space but not a T θ *- space since A = {1, 3} is

 θg^* -closed but not closed .

Example 4.9

Let $X = \{1, 2, 3\}, \tau = (X, \emptyset, \{1\}\}$.

 (X, τ) is $T\theta^*$ - space but not a ** $T\theta$ - space since $A = \{1,3\}$ is

 θg^{**} -closed but not θg^{*} -closed.

Theorem 4.10

Every $T\theta^{**}$ - space is ${}^{**}T\theta$ - space.

Proof:

```
Let (X, \tau) is T\theta^{**}- space.
```

Let A be a θg^{**} -closed set of (X, τ) .

Since (X, τ) is $a T\theta^{**}$ - space, A is closed.

By theorem (4.1.), A is θg^* -closed.

Therefore (X, τ) is $a^{**}T\theta$ – space.

the convers of the above (Theorem 4.10) is not true.

Example 4.11

In example (4.3.12), (X, τ) is $a^{**}T\theta$ – space but not a $T\theta^{**}$ - space since A = {1, 3} is θg^{**} -closed but not closed.

Theorem 4.12

Every T_b – space is a ** $T\theta$ – space.

Proof:

Let (X, τ) is T_b – space.

Then by theorem(4.3.6), it is a $T\theta^{**}$ - space.

Therefore by theorem(4.3.13), it is a ** $T\theta$ – space.

the convers of the above (Theorem 4.12) is not true.

Example 4.13

In example(4.3.11), (X , τ) is **T θ – space but not a T_b –space since $A = \{1, 3\}$ is gs-closed but not closed. [14, 15]

FUNDING

None

ACKNOWLEDGEMENT

None

CONFLICTS OF INTEREST

The author declares no conflict of interest.

REFERENCES

- [1] N. Levine, "Generalized closed sets in topology," Rend. del Circ. Mat. di Palermo, vol. 19, no. 1, pp. 89–96, 1970.
- [2] H. R. Maki, K. Devi, and Balachandran, "Associated topologies of generalized," Mem. Fac. Sci. Kochi Univ. Ser. A. Math, pp. 51–63, 1994.
- [3] S. P. Arya and T. Nour, "Characterization of s-normal space," Indian J. Pure. Appl. Math, pp. 717-719, 1990.
- [4] J. Dontchey, "on generalizing semi-preopen sets," Mem. Fac. Sci. Kochi. Ser. A. Math, vol. 16, pp. 35–48, 1995.
- [5] Y, "on generalized preregular closed sets in topological spaces," Indian J. Pure. Appl. Math, vol. 28, no. 3, pp. 351–360, 1997.
- [6] N. Palaniappan and K. Rao, "Regular generalized closed sets," Kyungpook. Math. J, vol. 33, pp. 211–219, 1993.
- [7] M. K. R. S. Veerakumar, "Between closed set and g-closed sets," Mem. Fas. Sci. Koch. Univ. Ser. A, Math, vol. 17, pp. 33-42, 1996.
- [8] A. Alkhazragy, A. K. H. A. Hachami, and F. Mayah, "Notes on strongly Semi closed graph," Herald of the Bayman Moscow StateTechnical University, Series Natural Sciences, pp. 17-27, 2022.
- [9] R, D. H. Maki, K. B. . R. Devi, K. Balachandran, and H. Maki, "Semi-generalized closed maps and generalized closed maps," Generalized ,
- [10] P. Bhattacharya and B. K. Lahiri, "Semi-generalized closed sets in topology," *Indian J.Math*, pp. 375–382, 1987.
- [11] S. Arya and T. Nour, "Gharacterizations of s-normal spaces," *Indian J. Pure . Appl. Math*, vol. 21, pp. 717–719, 1990. [12] H. K. Maki, R. Balachandran, and Devi, "Associated topologies of generalized," *Mem. Fac. Sci. Kochi. Univ. Ser. A. Math*, vol. 15, pp. 51–63,
- [13] K. Balachandran, P. Sundaram, and H. Maki, "On generalized continuous maps in topological spaces," Mem. Fac. Kochi Univ. Ser. A, Math, vol. 12, pp. 5-13, 1991.
- [14] M. Marwah, A. Hassan, and K. Hussain, "On Semi pre-generalized-closed sets," Wasit journal for pure science, vol. 1, no. 2, pp. 2022–2022.
- [15] M. R. Taresh and A. Al-Hachami on normal space: OR, Og, Wasit Journal of pure sciences, vol. 2022, pp. 61–70.