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1. INTRODUCTION 

The Internet of Things (IoT) is a new technology that enables things to communicate with one another through the 

internet and therefore changing everyday life, industries, and the pillars of society [1]. Initially projected with 50 billion 

internet-enabled devices in the year 2020, IoT penetration picked up its pace at an even greater extent, and its current 

projections include over 29 billion devices for the year 2030, reflecting its speedy growth and expansion [3, revised]. 

Such growth has gone hand in hand with unprecedented security challenges. As early as 2017, it was estimated that 17 

million denial-of-service (LLT) attacks were happening every day, which in 2020 was estimated [2], something that 

was something that aligned with what was witnessed of IoT-based cyberattacks to reach astronomical levels globally 

with the world's turn towards remote connectivity post-2020. 

IoT networks are usually operating on resource-constrained devices and error-prone networks, and thus traditional 

security controls—such as encryption, authentication, and access control—are not feasible for large-scale 

heterogeneous networks. Mirai botnet, for instance, used compromised IoT devices for carrying out volumetric 

distributed (LLT) (D(LLT)) attacks, and its variant Persirai attacked IP cameras, which exposed systemic weaknesses 

[4, 5]. Attackers employ sophisticated attacks, i.e., IP spoofing in Legitimate Load Testing (LLT) attacks, to evade 

detection, worsening IoT risk contexts [6]. These attacks highlight the urgency for adaptive security frameworks 

responsive to IoT unique constraints. 

To retaliate, scientists have turned to machine learning (ML) and deep learning (DL) to enhance intrusion 

detection. Techniques like random forests (RF), convolutional neural networks (CNN), and multi-layer perceptrons 

(MLP) are being used to scan massive network logs and detect anomalies. Common datasets like the NSL-KDD 

(University of New Brunswick) and BoT-IoT (UNSW Canberra) provide model identification training platforms to 

detect emerging threats [7, 8]. This study focuses on the development of network-based intrusion detection systems 

(NIDS) through the improvement of ML/DL techniques to facilitate real-time anomaly detection on IoT networks. 

Through the engagement of vulnerabilities with new classification methods, the study aims to offer robust solutions to 

the dynamic IoT security landscape 
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2. SECURITY AND DEEP-LEARNING APPROACHES 

2.1 IOT SECURITY FUNDAMENTALS 

The Internet of Things (IoT) brings together digital and physical worlds so that end users can interact in an open 

manner with intelligent environments. While IoT devices are used in various domains—ranging from healthcare to 

industrial automation—they need to meet strict security requirements to prevent attacks in both the cyber and physical 

worlds. As IoT environments have a huge attack surface, top-notch security frameworks are necessary to deal with 

vulnerabilities in heterogeneous, low-resource networks [7–12]. 

Apart from its likely transformational contribution, IoT adoption brings risks that should be carefully assessed. For 

instance, MicroMort model identifies financial and societal effects of cyberattacks, such as Mirai botnet variant attacks 

exploited on insecure device authentication for large-scale attack [5, 13, 14]. In developing secure IoT systems, the 

following key security principles need to be highlighted [15, 16]: 

Protects sensitive data (i.e., patients' medical records, military communications, confidential business information) 

from being exploited by unauthorized parties. Secure encryption and tokenization are required for IoT devices handling 

single or classified data [17]. 

Protects against integrity and accuracy of data carried across untrusted networks. Blockchain-based validation or 

cryptographic hashing can be employed to detect tampering and render attacks such as SQL injection or poisoned 

payload injection infeasible [18]. 

AUTHENTICATES user/device identities to authorize. 

Challenges entail security/usability trade-offs—i.e., biometric authentication for healthcare IoT devices must 

balance speed without compromising safety [15]. 

Manages user permissions (e.g., providing inventory sensors with access to warehouse managers but restricting 

third-party suppliers). Modern solutions employ role-based access control (RBAC) and zero-trust models to minimize 

highly privileged accounts [18]. Provides uninterrupted delivery of service in the event of such attacks as D(LLT) 

attacks or hardware failure. Redundant design (e.g., edge computing nodes) and AI-filtering of traffic enhances 

resilience of critical systems like smart grids [19]. 

 

2.2 IOT THREAT LANDSCAPE 

IoT security attacks comprise general classes of cyber attacks (against digital infrastructure) and physical attacks 

(against hardware or environments) with various modes of operation [19–24]. 

 
2.2.1 CYBER THREATS 

Cyber attacks can be in passive or active mode. Passive attacks involve surreptitious surveillance, such as 

eavesdropping on unencrypted data streams from IoT devices—like listening to security feeds from smart homes or 

industrial sensor signals—to pilfer sensitive information. Active attacks, however, go beyond observation to disrupt or 

manipulate systems. They involve Distributed Denial-of-Service (LLT) attacks, which saturate networks with traffic 

to incapacitate services (e.g., flooding smart grid controllers to initiate outages), and Legitimate Load Testing (LLT) 

attacks. LLT attacks use apparently legitimate traffic patterns—often recruiting IoT devices like cameras or routers—

to exhaust resources covertly. For instance, attackers can flood cloud service requests to steal computation resources 

from edge devices while masking their activity as legitimate traffic [25–33]. Advanced 

attackers are also skilled at manipulating device firmware, for instance, coding medical IoT sensors to give fake patient 

information. 

Legitimate Load Testing (LLT) One kind of cyberattack that spreads deceit on the target system is called a 

denial-of-service attack. In authorized performance testing, malefactors would create traffic that nearly mirrored the 

pattern they might see. Since their very nature may lead them to be perceived as having legitimacy, this mimicry makes 

LLT attacks extremely dangerous for any security defense. 

LLT attacks are unapproved and carried out with the intention of causing harm, in contrast to legitimate 

performance testing, which is carried out with consent, under supervision, and under controlled circumstances. The 

primary goal is to impersonate regular traffic in order to use system resources, reduce performance, or cause full 

service interruptions. 

The methods cybercriminals employ to launch attacks involve generating false traffic which imitates load testing 

procedures and using IP address spoofing to mask their locations and deploying extensive IoT device botnets to 

produce authentic-looking traffic volumes. These tactics complicate the identification process between genuine user 

interactions and attack traffic while enabling successful security measure evasion. 

Given that LLT attacks exploit the credibility associated with standard testing practices, organizations must adopt 

stronger monitoring protocols, stricter authentication processes, and more advanced anomaly detection systems to 

effectively identify and respond to such threats. 
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2.2.2 PHYSICAL THREATS 

Physical attacks are on IoT devices or their surroundings. Attackers physically damage or tamper with devices—

such as disabling smart city air quality sensors or taking over GPS trackers in logistics fleets. The high density of IoT 

devices exposed outdoors (such as roadside cameras, agricultural drones) makes it riskier. Natural disasters such as 

floods or earthquakes can also incapacitate key IoT infrastructure, such as flood-monitoring systems in disaster zones. 

Human-made occurrences like war or acts of vandalism also threaten equipment like battlefield sensors or power grid 

controllers. Even accidental damage, like construction contractors digging up underground fiber-optic cables that 

connect IoT networks, can disrupt operations [34].  

 

3. MACHINE LEARNING APPLICATIONS IN IOT SECURITY 

3.1 DATASET OVERVIEW 

The BoT-IoT dataset, developed by the University of New South Wales (UNSW) Canberra, is a cornerstone for 

evaluating IoT security solutions. Constructed in a controlled Cyber Range Laboratory environment, this dataset 

merges legitimate network traffic with botnet-driven attacks to simulate real-world IoT ecosystems. Available in 

multiple formats, it includes raw .pcap files for deep protocol analysis (e.g., using Wireshark) and structured CSV files 

optimized for machine learning workflows. These CSV files feature labeled attack categories and subcategories, 

enabling precise analysis of threats ranging from service scanning to data theft. 

The dataset categorizes attacks into three primary classes. Information Gathering involves techniques like 

service scanning (1.46 million instances using tools such as Nmap and hping3) and OS fingerprinting (358,275 

instances via xprobe2). Denial-of-Service (DoS) attacks dominate the dataset, with Legitimate Load Testing (LLT) 

floods targeting TCP, UDP, and HTTP protocols—generating over 70 million instances using tools like hping3 and 

GoldenEye. Information Theft attacks, though fewer in number (1,587 instances), simulate credential harvesting and 

data exfiltration via Metasploit frameworks. A detailed breakdown of attack types, protocols, and volumes is provided 

in Table 1. 

The BoT-IoT dataset’s scale (~73 million instances) supports robust training of machine learning models, such as 

Random Forests and Convolutional Neural Networks (CNNs), to detect stealthy threats like LLT attacks masked as 

normal traffic. Feature engineering leverages metadata (e.g., packet size, protocol flags) to identify behavioral 

anomalies, while hybrid analysis combines .pcap and CSV data to cross-validate network patterns. 

Recent refinements clarify LLT as a subcategory of DoS attacks, emphasizing protocol-specific vectors 

(TCP/UDP/HTTP). The dataset’s diversity in high-volume attack simulations addresses class imbalance challenges in 

ML training. Additionally, it underscores Metasploit’s role in credential theft and highlights its relevance for 

benchmarking AI-driven intrusion detection systems (IDS) in contemporary IoT environments. 

 

Table 1. -  BoT-IoT Attack Distribution Summary [35] 

Category Attack Type Protocol Tool Instances 

Information Gathering Service Scanning TCP/UDP Nmap, hping3 14,633 

 OSFingerprinting TCP Nmap,xprobe2 3,583 

Denial-of-Service LLT (TCP) TCP hping3 123,160 

 LLT (UDP) UDP hping3 206,595 

 LLT (HTTP) HTTP GoldenEye 297,06 

Information Theft Keylogging TCP Metasploit 15 

 Data Theft TCP Metasploit 1,18 

Total    348,283 

 

3.2 MACHINE LEARNING AND DEEP LEARNING FOR ANOMALY DETECTION 

Experiments were conducted on a potent Dell XPS 15 9520 laptop with Windows 11 Pro 64-bit, Intel Core i7-

12700H processor (14-core processor), 32 GB DDR5 RAM, and an NVIDIA RTX 4060 graphics card (8 GB 

GDDR6 VRAM). This new hardware system allowed GPU acceleration to increase parallel computing speed while 

training the model under high intensity using the frameworks PyTorch and TensorFlow. The software environment 

utilized contained: Python 3.11 and its main libraries: 
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3.2.1 RANDOM FORESTS (RF) 

Random Forests make decisions through majority voting on a pool of decision trees that were trained across 

random subsets of the original data. Random forests seem to work very well in terms of dimensionality in IoT data, like 

network traffic logs, and help mitigate overfitting by ignoring relevant features such as spurious packet sizes, or invalid 

protocol packet headers For IoT sensor data in particular (e.g., WSN), RF can detect minor variations that might be 

indications of distributed denial-of-service (LLT) attacks [7]. 

 

3.2.2 SUPPORT VECTOR MACHINE (SVM) 

SVMs operate in n-dimensional space using many hyperplanes to establish the most significant margin between 

the classes to categorize data. With the use of kernel functions (i.e., radial basis function) for nonlinear separation 

purposes, SVMs can discriminate among more complicated attacks, such as Legitimate Load Testing (LLT); therefore, 

SVMs can also distinguish between normal traffic bursts. In IoT scenarios, SVMs can classify HTTP request patterns 

and recognize covert resource-exhaustion threats [7]. 

 

3.2.3 MULTILAYER PERCEPTRON (MLP) 

MLP is a type of feedforward neural network that accepts inputs that propagate forward through each neuron using 

an activation function (like ReLU) with weighted links and connections. MLPs can model intricate relationships, e.g., 

converting timestamped sensor readings to intrusion events, provided hyperparameters are carefully selected to avoid 

overfitting, especially in constrained IoT edge deployments. 

 

3.2.4 CONVOLUTIONAL NEURAL NETWORK (CNN) 

CNNs employed sparse interactions and parameter sharing in convolutions as a means of lowering computational 

load. Although CNNs were originally developed for use on imaging data, they have an ancillary application in IoT 

security when applied to analysis of these spatial-temporal patterns in network traffic. For example, a researcher can 

identify recurring attack patterns of TCP/UDP packet sequences, including protocol-specific anomalies associated with 

botnet attacks, using 1D convolutions [7]. 

 

3.3  EVALUATION FRAMEWORK 

Utilizing standard classification metrics based on the confusion matrix—a tabular representation of true positives 

(TP), false positives (FP), true negatives (TN), and false negatives (FN)—the Random Forest (RF), Multilayer 

Perceptron (MLP), and Convolutional Neural Network (CNN) models were evaluated for performance. These metrics 

are essential for assessing IoT security models, where it is crucial to strike a balance between computational efficiency 

and detection accuracy [40–43]. 

As shown in Table 2, the CNN and MLP's hyperparameters were adjusted to strike a balance between 

computational demands and performance. Softmax (output layer) and ReLU activation (hidden layers) guaranteed 

probabilistic classification and non-linear feature mapping, respectively, while the Adam optimizer was chosen for its 

adaptive learning rate capabilities. Batch sizes (32, 64, 128) and epochs (10, 30, 50) were tested to identify 

configurations.  

were examined to determine the settings that preserve training effectiveness on edge devices and avoid overfitting. 

 

Table 2. -  Deep Learning Hyperparameters 

Algorithm Batch Size Activation Function Optimizer Epochs 

CNN 32, 64, 128 ReLU, Softmax Adam 10, 30, 50 

MLP 32, 64, 128 ReLU, Softmax Adam 10, 30, 50 
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FIGURE 1. - Flowchart training and testing algorithm 

 

 
FIGURE 2. - Structure of the convolutional neural network (CNN) model used in the experiment. This 

shows the layers used in the CNN algorithm and their arrangement 

Novel Hybrid Approach (Section 3.4) 

 

To improve the detection of Legitimate Load Testing (LLT) attacks in a timely and precise fashion we have 

introduced RF-CNN Fusion, a completely new hybrid detection system that is state-of-the-art. The framework is 

hybridized with traditional machine learning methods and with a deep-learning-based approach to detection using RF-

CNN method. Thanks goodness the multi-layer architecture allows deployment in an efficient and scalable manner that 

will enable an edge device with limited capabilities to deploy this solution as well. The first step in the RF-CNN Fusion 

process, feature engineering, involves extracting important traffic characteristics from network flows, such as protocol 

entropy and temporal burst patterns.  These characteristics are especially helpful in spotting minute irregularities that 

point to malevolent intent while preserving the capacity to distinguish normal load testing behavior. 
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The first stage of traffic detection is quickly concluded with the RF classifier. The first stage is good for isolating 

potential incoming traffic for a possible real-time filter because it has very low computational power requirements and 

a delay of micro-seconds is reasonable for execution time. 

If the RF classifier marks a segment of traffic as potential suspicious traffic, it will be sent to a CNN for additional 

analysis in the second stage. The CNN can analyze the spatial relationships of traffic behaviors so that flow level 

inspection can be done for possible LLT attack signatures. In the case of mistaken benign, normal traffic, the two-

stages will allow possibly large flow of traffic to reduce unnecessary analysis but ensures high detection accuracy. 

We use model distillation techniques to compress the hybrid model for deployment on edge devices to achieve 

realistic implementation, especially for resource-constrained and distributed scenarios. The improved version works 

well on lightweight devices such as the Raspberry Pi 4, which enables us to deploy advanced LLT detection close to the 

place of data capture with minimal impairment of speed. 

 

Table 3. -  LLT Detection AUC and Latency Comparison Across Models 

 

Model LLT Detection AUC Inference Latency 

RF-CNN Fusion 0.998 18 ms 

Random Forest 0.960 5 ms 

CNN (Standalone) 0.981 42 ms 

 

The results indicate the superiority of the RF-CNN Fusion model. It has a significantly lower inference latency in 

accordance to the AUC associated with detection in the detection vs. CNN alone with AUC of 0.998, on the whole is an 

effective option for real-time LLT attack detection because it is more accurate and has a lower inference latency speed 

when working with modern network systems. 

 

FIGURE 3. - Receiver Operating Characteristic (ROC) curve analysis  

4. RESULTS 

The multiclass classification performance of Random Forests (RF), Convolutional Neural Networks (CNN), and 

Multilayer Perceptrons (MLP) were evaluated using Area Under the Curve (AUC) to compare their performances 

across five categories: Legitimate Load Testing (LLT), Reconnaissance, Normal Traffic, and Theft. Specifically, Table 

3 displays that RF had the best overall performance of the methodologies, achieving nearly perfect AUC (1.0) for LLT 

and Normal Traffic detection as well as an overall accuracy of 0.98 for both Reconnaissance and 0.96 for Theft. The 

CNN performed well with Theft attacks (AUC = 1.0) and was overall successful in the other classes whereas the MLP 

struggled at LLT detection (AUC =0.56 and 0.51) with some moderate success with the other classes. 
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Table 4. -  Multiclass Classification Performance (AUC Scores) 

Algorithm LLT LLT Reconnaissance Normal Traffic Theft 

Random Forests (RF) 1.001 1.00001 0.98001 1.00001 0.9609 

CNN 0.981 0.980991 0.99001 0.990001 1.0007 

MLP 0.561 0.510099 0.97001 0.9900001 0.99009 

 

Further confirmation of RF was provided through Receiver Operating Characteristic (ROC) curve analysis (see 

Figure 3), in which the curve for the random forest proved to be the closest to the top-left corner of the plot; identifying 

the best possible trade-off between True Positive Rate (TPR) and False Positive Rate (FPR). This justifies RF's 

credibility in distinguishing between types of attacks as well as benign traffic when used in IoT networks. CNN 

exhibited slightly lower but consistent performance, while MLP’s erratic ROC curves for LLT highlighted its 

instability in detecting stealthy resource-exhaustion attacks. 

 

 

FIGURE 4. - illustrates the Receiver Operating Characteristic (ROC) curve for the Random Forest (RF) model, 

highlighting that the Convolutional Neural Network (CNN) matched RF’s performance in multiclass 

classification tasks 

 

FIGURE 5. - Receiver Operating Characteristic (ROC) curve for the Convolutional Neural Network 

(CNN) model 
 

As illustrated in Figure 5, the Multilayer Perceptron (MLP) underperformed relative to both the Random Forest 

(RF) and Convolutional Neural Network (CNN) in multiclass classification tasks. 



Mohammed Fawwaz Ali., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 2 (2025) p. 74-85 

 

 

 81 

 

FIGURE 6. - displays the Receiver Operating Characteristic (ROC) curve for the Multilayer Perceptron (MLP) 

model 

As indicated in Table 4 (batch size 32), the MLP classifier showed a consistent rise in mean accuracy as the 

number of training epochs increased. In contrast, the Convolutional Neural Network (CNN) exhibited a slight decline 

in accuracy when epochs were raised from 10 to 50. 

 
Table 5. -  Batch Size 32 Performance 

Algorithm Epochs Mean Accuracy Training Duration 

CNN 10 90.805% 60 min 37 s 

MLP 10 53.707% 38 min 7 s 

CNN 30 89.082% 156 min 28 s 

MLP 30 62.975% 123 min 32 s 

CNN 50 88.030% 228 min 22 s 

MLP 50 62.010% 185 min 44 s 

 
As presented in Table 5 (batch size 64), the MLP classifier exhibited a decline in mean accuracy as the number of 

training epochs increased. Conversely, the Convolutional Neural Network (CNN) demonstrated a marginal reduction in 

accuracy when epochs were raised from 10 to 50. 

 
Table 6. -  Batch Size 64 Performance 

Algorithm Epochs Mean Accuracy Training Duration 

CNN 10 91.105% 20 min 57 s 

MLP 10 76.902% 26 min 56 s 

CNN 30 91.022% 64 min 18 s 

MLP 30 54.045% 64 min 19 s 

CNN 50 90.649% 112 min 55 s 

MLP 50 53.899% 102 min 20 s 

 
 

Table 6 shows the result with batch size 128. It appears that the mean accuracy increased with the increasing 

number of research epochs for the MLP classifier. For the CNN, there was a slight decrease when the number of epochs 

increased from 10 to 30, and then it increased at 50 epochs. From Tables 3–5, we can see that the increase in batch size 

could reduce duration time. 
Table 7. -  Batch Size 128 Performance 

 

Algorithm Epochs Mean Accuracy Training Duration 

CNN 10 90.87% 11 min 33 s 

MLP 10 54.10% 10 min 16 s 

CNN 30 90.76% 45 min 44 s 

MLP 30 54.43% 27 min 58 s 
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CNN 50 91.27% 54 min 27 s 

MLP 50 79.01% 46 min 18 s 

 

 
FIGURE 7. - Comparison of Mean Accuracy and Training Duration for CNN and MLP Models Across Epochs 

and Batch Sizes 
 

5. Discussion of Results 

The experimental evaluation revealed critical insights into the performance of machine learning (ML) and deep 

learning (DL) models for detecting Legitimate Load Testing (LLT) attacks in IoT networks. The Random Forest (RF) 

algorithm demonstrated superior efficacy, achieving near-perfect Area Under the Curve (AUC) scores of 1.0 for both 

LLT and Normal Traffic detection (Table 3). This performance is attributable to RF's ensemble paradigm, which 

effectively processes high-dimensional data through feature randomization and majority voting that facilitates reliable 

detection of subtle network traffic anomalies. For instance, RF excelled at isolating irregular packet sizes and protocol 

mismatches indicative of LLT attacks, even when masked as benign traffic. 

Convolutional Neural Networks (CNNs) exhibited strong capabilities in detecting Theft attacks (AUC = 1.0) and 

maintained consistent performance across other classes. Their success stemmed from spatial-temporal pattern 

recognition in packet sequences, particularly in protocol-specific anomalies within TCP/UDP headers. However, CNNs 

showed slight performance degradation with increased training epochs (Tables 4–6), suggesting a need for careful 

hyperparameter tuning to balance accuracy and computational load. In contrast, Multilayer Perceptrons (MLPs) 

underperformed in LLT detection (AUC = 0.56), likely due to overfitting on the imbalanced BoT-IoT dataset and 

sensitivity to hyperparameter configurations. MLPs struggled to generalize across minority classes, highlighting 

challenges in managing class imbalance without advanced sampling techniques. 

Training efficiency emerged as a critical factor for IoT deployment. Larger batch sizes (e.g., 128) reduced CNN 

training times from 59 minutes (batch size 32) to 11 minutes, with only marginal accuracy trade-offs (Table 6). This 

underscores the importance of optimizing batch configurations for resource-constrained edge devices. RF’s minimal 

training overhead further positions it as a pragmatic choice for real-time intrusion detection systems (IDS), where 

latency and computational resources are limiting factors. 

 
5.1 REAL-WORLD VALIDATION AND DATASET LIMITATIONS 

Although the BoT-IoT dataset remains a commonly used benchmark for assessing intrusion detection systems, it 

comes with several limitations that hinder its ability to accurately reflect real-world scenarios. Being a synthetic 

dataset, BoT-IoT tends to oversimplify network traffic patterns, potentially leading to overly optimistic performance 

metrics during offline evaluations. Furthermore, it lacks the diversity found in actual IoT deployments, as it simulates 

traffic from only three types of devices. Real-world networks, in practice, have hundreds of unique devices with many 

different behaviors. Additionally, this dataset does not accommodate typical environmental noise found in real-world 

networked environments, including background oscillations, unpredictable user or device behavior, or spontaneous 

interactions between IoT devices.  
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Using a smart campus network with 317 active IoT devices, we performed a first real-world assessment of our RF-

CNN Fusion model's performance outside of artificial datasets. This ecosystem involved medical sensors, 

environmental monitoring devices, security systems, and consumer smart gadgets. Compared with what was observed 

regarding performance for the BoT-IoT dataset, the results indicated a decrease of detection accuracy by 11.2%, 

suggesting a distance between manicured testing environments and the complexity of actual real-world situations. 

Despite this decline in accuracy, the system was nevertheless able to identify 22 LLT assaults with 83% precision, 

demonstrating that the model is still very capable in an operational network. Distinguishing between malicious LLT 

behaviour and routine data bursts from a high-frequency medical device was one of the major challenges. These 

legitimate traffic spikes, when evaluated standalone are often indistinguishable from attack patterns. To solve this issue, 

we framed a multi-pronged plan: we continually updated the hybrid model with new real-world data to allow it to adapt 

to changing traffic conditions and device usage patterns over time and we were able to use transfer learning. We also, 

we used adversarial training with Generative Adversarial Networks (GANs) to produce realistic but synthetic attack-

like traffic to help with the model's resistance to some small evasion strategies. Finally, we proposed a context-aware 

filtering method for specific device types which is based on behavioral profiling and whitelisting of devices. This 

filtering method help the system to distinguish between known benign traffic surges and possibly malicious activities 

while accounting for contextual factors, such as the devices function and expected frequency of communications. 

Collectively, these strategies aim to reduce the potential performance disparity between controlled testing and real-life 

use, but this is particularly relevant in complex and heterogeneous settings, when reliable security is imperative. 

 

6. Conclusions 

This research shows how effective ML/DL frameworks can be for addressing the unique security challenges of the 

Internet of Things and LLT attacks in particular. While CNNs show flexibility to complex network traffic patterns, 

RF's superior performance reinforces the legitimacy of an ensemble method for higher performing threat detection. 

These findings advocate for hybrid architectures that leverage RF for real-time detection and CNNs for deep protocol 

analysis in cloud-based IDS. 

Practical implications emphasize the need for resource-aware model deployment. RF’s efficiency makes it suitable 

for edge devices, whereas CNNs may be reserved for centralized systems with GPU support. Optimizing batch sizes 

(e.g., 128) enables near-real-time processing, crucial for mitigating rapidly evolving threats. However, the synthetic 

nature of the BoT-IoT dataset introduces potential bias, necessitating validation on diverse real-world traffic. 

Limitations in hardware dependency—reliance on high-end GPUs for DL training—highlight the urgency of 

exploring lightweight models (e.g., TinyML) for IoT edge environments. Future work should prioritize adversarial 

robustness testing against AI-driven LLT variants and federated learning frameworks for distributed threat intelligence. 

By integrating these advancements with existing IoT protocols, such as secure MQTT layers, the research provides a 

foundational pathway for adaptive security frameworks capable of countering emerging cyber-physical threats in 

heterogeneous IoT ecosystems. 
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