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1. INTRODUCTION 

Unconstrained optimization involves minimizing or maximizing an objective function without restrictions on the 

variables. Typically, the objective function is smooth and differentiable. The Conjugate Gradient (CG) method is 

especially effective for quadratic objective functions, commonly found in linear regression and machine learning, though 

it can also be adapted for non-quadratic functions. 

A general unconstrained optimization problem is represented as: 

{min f(x)|xϵRn}, where f(x): Rn → R ,                                                               (1) 
 

is continuously differentiable and its gradient g(x) =∇𝑓(𝑥) where 𝑔(𝑥): 𝑅𝑛 → 𝑅𝑛 Is available. Conjugate Gradient 

(CG) methods are important for solving (1), especially for large-scale problems. The CG method has the following form: 

𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖 , 𝑖 = 0,1, . . .                                                                            (2) 

Where  𝑥0 𝑖𝑠 𝑎  𝑔𝑖𝑣𝑒𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑖𝑛𝑡, 𝑣𝑖 =  αi𝑑𝑖 , 𝛼𝑖  Is the step size,  di The search direction is defined as d0 =
−g0, if i = 0  

di+1 = −gi+1 + Bidi,                                                                                (3) 

where Bi is scaler and i ≥ 0,                  
A scaler Bi Given by different formulas and different results in distinct CG methods. There is a cardinal number of 

CG given by: (BHS =
gi+1

T yi

di
Tyi

   Hestenes and Stiefel [1], BFR =
gi+1

T gi+1

gi
Tgi

  R. Fletcher, C. M. Reeves [2], BPRP =
gi+1

T yi

gi
Tgi

 Polak 

and Ribière [3] ,BDY =
gi+1

T gi+1

di
Tyi

 Dai and Yuan [4]In addition to the global CG, researchers are looking for new CGs, for 

example, (see [5],[6],[7],[8], and [9] ). 

When researching convergence, the researcher frequently needs to conduct an exact or approximate line of research . 

Applying the CG method. Like the strong Wolf conditions .The strong Wolf conditions are to find 𝛼𝑖, 

𝑓(𝑥𝑖+1 + 𝛼𝑖𝑥𝑖) ≤ 𝑓(𝑥) + 𝛿i𝛼𝑖𝑔𝑖
𝑇𝑑𝑖 ,                                                       (4)     

       |𝑔𝑖+1
𝑇 𝑑𝑖| ≤ −𝛿k𝑑𝑖

𝑇𝑔𝑖 ,                                                                 (5) 
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Where 0< 𝛿𝑖 < 𝛿K < 1 are constants according to Li and Weijun [10]. 

The study likely explores how these different CG methods perform in terms of convergence speed, computational 

efficiency, and robustness across various optimization problems. By comparing new formulations with traditional 

methods in ([4], [11]), the research aims to highlight advancements in optimization techniques that can lead to improved 

performance in practical applications. 

Section 2 (Derivation of New Parameter) is to derive a new parameter by reformulation of existing conjugate gradient 

equations analytically. The described parameter is aimed at preserving the descent properties and enhancing robustness. 

The full outline of the new algorithm is filed in section 3 (Roadmap of New Algorithm). It incorporates the new parameter 

into a modified conjugate gradient scheme, whereby search directions satisfy descent conditions. The part describes the 

process of initialization to convergence checks. Section 4 contains a rigorous demonstration that the algorithm fulfils the 

criteria of descent and sufficient descent, required to ensure convergence. They also deliver the convergence of the 

algorithm globally to standard mathematical assumptions, e.g., Lipschitz continuity of the gradient. At last, Section 5 

(Results and Conclusion) provides numerical results of comparing the new algorithm to the existing ones.  

 
2. DERIVATION OF NEW PARAMETER 

The main idea of the new CG algorithm is to replace 𝑦𝑖  with   𝑦𝑖
∗   where   𝑦𝑖

∗ = 𝑦𝑖 +
0.2−𝜌𝑖

1−𝜌𝑖
(𝐵𝑖𝑣𝑖 − 𝑦𝑖)[12], In 

search direction. This adjustment improves the algorithm’s efficiency and convergence properties when solving 

optimization problems, particularly for large-scale systems. 

  𝑦𝑖
∗ = 𝑦𝑖 +

0.2−𝜌𝑖

1−𝜌𝑖
(𝐵𝑖𝑣𝑖 − 𝑦𝑖), 

𝑤ℎ𝑒𝑟𝑒  𝜌𝑖 < 0.2 , 𝛿 =
2√𝜖(1+‖𝑥𝑖+1‖)

‖𝑣𝑖‖
, and 𝐵𝑖𝑣𝑖 =

𝑦𝑖

𝛿
=

𝑦𝑖

2√𝜖(1+‖𝑥𝑖+1‖)

‖𝑣𝑖‖

=
‖𝑣𝑖‖ 𝑦𝑖  

2√𝜖(1+‖𝑥𝑖+1‖)
, then  

yi
∗ = [1 + (

0.2 − 𝜌𝑖

(1 − 𝜌𝑖)
)(

1

𝛿
− 1)]𝑦𝑖  

Multiply both sides by 𝑔𝑖+1
𝑇 ,   We obtain  

gi+1
T yi

∗
= [1 + (

0.2 − ρi

(1 − ρi)
)(

1

δ
− 1)]gi+1

T yi,                                             (6) 

We can write (3) as: 

𝑑𝑖+1
T = −𝑔𝑖+1

T + 𝐵𝑖
𝑛𝑒𝑤𝑑𝑖

𝑇 

Multiplying both sides by yi  and by equation (6), along with the modification of the conjugacy condition (𝑑𝑖+1
T 𝑦𝑖 =

−𝑡𝑔𝑖+1
𝑇 𝑣𝑖), We obtain: 

−𝑡𝑔𝑖+1
𝑇 𝑣𝑖 + (1 + (

0.2 − 𝜌𝑖

(1 − 𝜌𝑖)
)(

1

𝛿
− 1))𝑔𝑖+1

𝑇 𝑦𝑖 = 𝐵𝑖
𝑛𝑒𝑤𝑑𝑖

𝑇𝑦𝑖  

Let 

                    𝜇 = 1 + (
0.2−𝜌𝑖

(1−𝜌𝑖)
)(

1

𝛿
− 1),                                                           (7) 

 

 Finally, we get  

           Bi
new =

 −tgi+1
T vi

di
Tyi

+ μ
gi+1

T yi

di
Tyi

,                                                              (8)  

And the new search direction update gives us: 

di+1 = −gi+1 + [
 −tgi+1

T vi

di
Tyi

+ μ
gi+1

T yi

di
Tyi

]di,                                                    (9)          

 
3. ROADMAP OF NEW ALGORITHM  

                       
Data: 0< δi < δK <1, μ = 0.98, ρi < 0.2 , δ = 2√ϵ , √ϵ=10−3𝑎𝑛𝑑 𝜖 = 10−6 

 Initialization: start with an initial point 𝑥0𝑎𝑛𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝜌𝑖 = 1.0001 ,𝑑0 = −𝑔0 , ϵ = 10−6  k=0 and 
μ = 0.98. 

 Convergence check:  if the norm of the gradient 𝑔𝑖 ≤ 𝜖 Stop; otherwise, proceed to the next step. 
 Step length calculation: calculate the step size by (4) and (5). 
 Update position: update the point 𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖 , 𝑖 = 0,1, . .. If the norm of the gradient 𝑔𝑖+1 ≤ 𝜖, stop. 
 Search direction: Compute the new search direction by using (9) where𝐵𝑖

𝑛𝑒𝑤  calculate by (8) 

 Iteration: increment i and repeat it. 

 
3.1 DESCENT AND SUFFICIENT DESCENT CONDITIONS  



Hussein Saleem Ahmed et al., Wasit Journal of Computer and Mathematics Science Vol. 4 No. 2 (2025) p. 86-93 

 

 

 88 

The CG method’s descent condition ensures each iteration reduces the objective function or error, and a descent 

direction guarantees movement towards a minimum (optimal solution). But the second condition, this stronger condition, 

guarantees that the reduction in the function value from one iteration to the next is significant enough. 

 

Before proving the descent condition, we first verify that the scalar. μ Is positive. 

According to algebraic properties, we start with the inequality: 

‖𝑥𝑖+1 − 𝑥𝑖‖ ≤ ‖𝑥𝑖+1‖ 
We can write by  

‖𝑥𝑖+1 − 𝑥𝑖‖ ≤ 1 + ‖𝑥𝑖+1‖ 

Now, divide both sides by (1 + ‖𝑥𝑖+1‖) and multiply by (
1

2√ϵ
) gives: 

‖𝑥𝑖+1 − 𝑥𝑖‖

2√𝜖(1 + ‖𝑥𝑖+1‖)
≤

1

2√𝜖
 

We know ‖𝑣𝑖‖ = ‖𝑥𝑖+1 − 𝑥𝑖‖, this gives 

 
‖𝑣𝑖‖

2√𝜖(1 + ‖𝑥𝑖+1‖)
− 1 ≤

1

2√𝜖
− 1 

Multiplying both sides by (
0.2−𝜌𝑖

1−𝜌𝑖
) and adding 1 to both sides yields: 

 

[
1

𝛿
− 1] ( 

0.2 − 𝜌𝑖

1 − 𝜌𝑖

) + 1 ≤ (
1

2√𝜖
− 1) (  

0.2 − 𝜌𝑖

1 − 𝜌𝑖

) + 1 

From (7) we get  

 

μ ≤ (
1

2√𝜖
− 1) (  

0.2 − 𝜌𝑖

1 − 𝜌𝑖

) + 1 

since both (
1

2√𝜖
− 1), and 

0.2−𝜌𝑖

1−𝜌𝑖
  They are positive. We conclude that. μ > 0. For this study, the value of μ Chosen to 

be 0.98. 

Theorem 1: The sequence {𝑥𝑖}It is generated by (2) and (9), where the step size is determined using both Exact Line 

Search (ELS) and Inexact Line Search (ILS) methods. Then the search direction (3) with a new parameter 

(8) of the conjugate The gradient method is given as (9) satisfies the descent direction, i.e.  𝑔𝑖+1
𝑇  𝑑 𝑖+1≤ 0. 

Proof: Multiply both sides of (9) by gi+1
T on the left , we obtain 

gi+1
T di+1 = −gi+1

T gi+1 + [
 −tgi+1

T vi

di
Tyi

+ μ
gi+1

T yi

di
Tyi

] gi+1
T di,                               (10) 

I)If the step length is determined by (ELS), which requires 𝑔𝑖+1
𝑇 𝑑𝑖 = 0  

Thus,  

𝑔𝑖+1
𝑇 𝑑𝑖+1 = −‖𝑔𝑖+1‖2 ≤ 0. 

Then the proof is completed. 

II)On the other hand, if the step length is determined by (ILS), which requires 𝑔𝑖+1
𝑇 𝑑𝑖 ≠ 0. We know that the first 

term is less than or equal to zero; we need to prove that the second term is also less than or equal to zero. 

gi+1
T di+1 = −gi+1

T gi+1 −
 αt(gi+1

T di)2

di
Tyi

+ μ
gi+1

T gi+1

di
Tyi

gi+1
T di- μ

gi+1
T gi

di
Tyi

gi+1
T di 

since di
Tyi ≥ gi+1

T di then  

gi+1
T di+1 ≤ −gi+1

T gi+1 −  αtdi
Tyi + μgi+1

T gi+1- μgi+1
T gi,                            (11) 

 

Multiply wolf conditions gi+1
T di ≥ c di

Tgi by (−1)    we have  gi+1
T gi ≥ c gi

Tgi 

Or  −gi+1
T gi ≤ −c gi

Tgi , then  

gi+1
T di+1 ≤ −(1 − μ)‖gi+1‖2 −  αtdi

Tyi-c μ‖gi‖
2,                               (12)         

It is clearly 1 − μ,  α, t, di
Tyi And c, are less than or equal to zero, s.t 

gi+1
T di+1 ≤ 0. ∎ 

 
Theorem 2: Assume that the step length satisfies strong Wolfe conditions, and then the following result:   

𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −𝑐‖𝑔𝑖+1‖2 holds when 0≤ 𝑖. 

Proof: From equation (11) we have   

𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −(1 − 𝜇)‖𝑔𝑖+1‖2 −  𝛼𝑡𝑑𝑖

𝑇𝑦𝑖-c 𝜇‖𝑔𝑖‖
2 ≤ 0,                                 (13)   

According to algebraic rules, we can be written can be write (13) by 

𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −(1 − 𝜇)‖𝑔𝑖+1‖2, 
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Let c= 1 − 𝜇 And c is positive  

Finally, we have 

 𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −c‖𝑔𝑖+1‖2 

 
3.2 THE GLOBAL CONVERGENCE OF THE NEW ALGORITHM 

Global convergence is a key property of optimization algorithms. Ensuring they reach a stationary point (or 

minimizer) of the objective function from any initial point. F conjugate gradient method, this means that the sequence of 

iterations.  Subscript {𝑥𝑖} will satisfy the condition lim
𝑖→∞

‖𝑔𝑖‖ = 0. 

Lema 1. If ∑
1

‖𝑑𝑘‖2𝑘≥1 = ∞    𝑡ℎ𝑒𝑛 lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑘‖ = 0 

In this section, the global convergence of the new CG algorithm is analyzed under assumptions. 

Assumptions (E)  
(E1) Lipschitz Continuity of the Gradient: 

 Assuming η is a neighborhood of a point or set Ω, and f is continuously differentiable in η and its gradient is 

Lipschitz continuous, i.e., there exists a constant L > 0 such that ‖𝑔(𝑥𝑖+1) − 𝑔(𝑥𝑖)‖ ≤ 𝐿‖𝑥𝑖+1 − 𝑥𝑖‖ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈n 

We can be written by 

‖𝑦𝑖‖ ≤ 𝐿‖𝑣𝑖‖,                                                             (14) 

(E2) Convex function: There exists a constant 𝜗 ≥ 0 such that for all x, y∈ 𝜑  

(𝑔(𝑥) − 𝑔(𝑦))𝑇(𝑥 − 𝑦) ≥ 𝜗‖𝑥 − 𝑦‖2,                                         (15) 

If 𝑓 Is a uniformly convex function, we can write Eq. (15) by  

𝑦𝑖
𝑇𝑣𝑖 ≥ 𝜗‖𝑣𝑖‖

2 or 𝑦𝑖
𝑇𝑑𝑖 ≥

𝜗

𝛼
‖𝑣𝑖‖

2,                                             (16)     

(E3) Bounded level sets: The level set Ω = {𝑥 ∈  𝑅𝐼/𝑓(𝑥)  ≤  𝑓(𝑥0)  + 𝜀} The function f is bounded below.  

 By algebraic role, we can write.  

‖𝑓(𝑥)‖ ∥ 𝑔(𝑥) ∥ ≥  𝑓(𝑥)𝑇𝑔(𝑥),                                                  (17) 

On the objective function f(x), there exists a constant. 𝛾 ≥ 0 such that  

‖𝑔𝑖+1‖  ≤ γ,                                                               (18)                                          

Theorem 3: Suppose that assumption (E) holds and that the objective function f(x) is uniformly convex. The new 

algorithm of the form (14), (15), (16), (17) and (18), where satisfies the descent condition and is obtained by the strong 

Wolfe conditions (4) and (5), satisfies the global convergence, i.e. 

𝑙𝑖𝑚
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑖‖ = 0 

Proof:  

We can rewrite equation (9) as  

‖di+1‖ = ‖−gi+1 + Bi
newdi‖ 

Taking norms on both sides gives  

‖di+1‖ ≤ ‖gi+1‖+|Bi
new| ∗ ‖di‖ 

Substituting the expression for Bi
new, we obtain 

‖di+1‖ ≤ ‖gi+1‖+|
𝑡𝑔𝑖+1

𝑇 𝑣𝑖

𝑑𝑖
𝑇𝑦𝑖

| ‖𝑑𝑖‖ + |𝜇
𝑔𝑖+1

𝑇 𝑦𝑖

𝑑𝑖
𝑇𝑦𝑖

| ∗ ‖di‖ 

We know 𝑑𝑖
𝑇𝑦𝑖 > 𝑔𝑖+1

𝑇 𝑑𝑖, 𝑔𝑖+1
𝑇 𝑦𝑖 < ‖𝑔𝑖+1‖‖𝑦𝑖‖ and 𝑦𝑖

𝑇𝑑𝑖 ≥
𝜗

𝛼
‖𝑣𝑖‖2    

‖di+1‖ ≤ ‖gi+1‖+𝛼𝑡‖𝑑𝑖‖ + |μα
‖𝑔𝑖+1‖‖𝑦𝑖‖

𝜗‖𝑣𝑖‖2 | ∗ ‖di‖ 

Under Assumptions (E1), (E2) and (E3) gives as: 

 

‖di+1‖   ≤ 𝛾+𝛼t‖di‖ +
μα

𝜗
𝛾 

Let ‖𝑣𝑖‖ = ‖𝑥𝑖+1 − 𝑥𝑖‖ , D= 𝑚𝑎𝑥{‖𝑥𝑖+1 − 𝑥𝑖‖, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝜖𝑅}  𝑥𝑖+1and 𝑥𝑖  They are consecutive iterates of the 

optimization algorithm. 

‖di+1‖   ≤ γ+tD + μγ
L

ϑ
 =φ 

Now, by the lemma.1 If ∑
1

‖di+1‖2i≥1 = ∑
1

φ2i≥1 = ∞   

  then       
lim
i→∞

inf‖gi‖ = 0. ∎ 

 
4. NUMERICAL RESULT   

The section is devoted to comparative numerical analysis of the proposed method with two classical methods of 

computing conjugate gradients:(DY-CG) and (LS-CG). The benchmark test functions employed in the evaluation are 

seven in number, comprising different dimensions of the problem: 5, 100, 3000, and 5000. In Tables 1, 2, and Figure 1,2, 
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the results are outlined. The algorithms were implemented in Fortran 95 to record the number of iterations and functions. 

Matplotlib was used for visualizing performance. 

They are then evaluated based on the number of iterations (NOI) and number of function evaluations (NOF) a method 

may need to complete. An overall lower number in either of the measures indicates more efficiency and strength of the 

optimization strategy. In all experiments, the following parameter settings were fixed: 

𝜇 = 0.98, 𝜌𝑖 = 1.9998, 𝑡 = 1, 𝜀 = 10−6 𝑎𝑛𝑑 𝛿 = 2√𝜖 . 

As evidenced in the results, the proposed method also used a lesser number of iteration steps and evaluations of the 

functions in most of the test cases, and in particular, the high-dimensional problems (see Tables 1,2, and Figure 1, 2) 

Table 1. - Comparison between the new technique with two well-known CG methods across the number of 
iterations (NOI) and the number of functions (NOF) 

 
Key Finding  

 Hybrid parameter formulation: Since the technique is a combination of the advantages of various beta update 

strategies, it has the advantage that it will exhibit the global convergence benefits as well as local acceleration effects. 

 Adaptive scaling 𝜇: Use of the 𝜇 Scaler in the beta formula is a balancing agent to the method. It was observed that 

after setting dozens of values, the best option available was 0.98 because it produced the best performance concerning 

the efficiency of optimization. It was a value that considerably enhanced the outcome as opposed to the common method, 

which does not incorporate the said parameter. 

Function 

Test 

Dimensions 

N 

NEW Method 

NOI-NOF 

Dai-Youan 

NOI-NOF 

Lia- Story 

NOI-NOF 

 
SUM 

𝐱𝟎 = 𝟐 

 

SHALLOW 

𝐱𝟎 = (−𝟐, −𝟐) 

 

 

WOLF 

𝐱𝟎 = −𝟏 

 

 

BEAL 

𝐱𝟎 = (𝟎, 𝟎) 

 

 

ROSEN 

𝐱𝟎 = (−𝟏. 𝟐, 𝟏) 

 

 

CUBIC 

𝒙𝟎 = (−𝟏. 𝟐, 𝟏) 

 

 

OSP 

𝐱𝟎 = 𝟏 

 

 

Total 

5 

100 

3000 

5000 

5 

100 

3000 

5000 

5 

100 

3000 

5000 

5 

100 

3000 

5000 

5 

100 

3000 

5000 

5 

100 

3000 

5000 

5 

100 

3000 

5000 

-------- 

5-24 

14-79 

42-217 

29-132 

8-21 

8-21 

9-24 

9-24 

15-31 

49-99 

174-359 

166-347 

11-28 

11-28 

12-30 

12-30 

30-84 

30-84 

31-86 

31-86 

12-35 

13-37 

13-37 

13-37 

8-41 

47-163 

218-668 

254-785 

1296-3698 

6-39 

14-85 

31-166 

33-149 

8-21 

8-21 

9-24 

9-24 

13-27 

45-91 

125-263 

159-327 

11-28 

12-30 

12-30 

12-30 

30-82 

30-82 

30-82 

30-82 

14-39 

15-43 

15-43 

15-43 

9-45 

52-180 

421-1388 

555-1857 

1724-5321 

6-39 

14-80 

32-167 

37-202 

8-21 

8-21 

9-24 

9-24 

14-29 

49-99 

176-364 

166-347 

11-28 

12-30 

12-30 

12-30 

30-85 

30-85 

30-85 

30-85 

15-45 

16-47 

16-47 

16-47 

12-71 

72-227 

400-1438 

729-2706 

1915-6483 
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 Numerical behavior on large-scale problems: The approach is robust with dimension, as in the case of 3000 and 

the 5000 variable benchmarks. 

 Smooth updates to the search direction: The three-term form keeps away useless zigzagging and aids in staying 

nearer to a straight shot towards the minimizer. 

Table 2. - Total number of iterations and functions of the new method with the DY and LS methods 

 
Method Total NOI Total NOF 

New CG method 

Dai-Yoan method 

Lia-Story method 

 

1296 

1724 

1915 

3698 

5321 

6483 

                             
FIGURE 1. - Comparison of the new method with the DY and LS methods in terms of the number of iterations 

across different problem dimensions, 5 to 5000 
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FIGURE 2. - Comparison of the new method with the DY and LS methods in terms of the number of function 

evaluations across different problem dimensions, 5 to 5000 

 
5. CONCLUSION  

In the work, a new beta formula was presented in the scope of conjugate gradient methods of unconstrained nonlinear 

optimization problems. The suggested formula uses a mechanism that is underpinned by a tunable (miu =0.98), which 

lets the search direction be adaptively mined. Based on an extensive numerical testing of a collection of standard test 

functions with dimensions up to 5000-dimensional, the new method was compared in terms of its performance against 

two of the most famous conjugate gradient methods:  DY-CG and LS-CG. 

The findings demonstrated the fact that the new beta-based procedure revealed consistent success on both measures 

of iterations and the functional call in high-dimensional problems. This is improved by the effects of the adaptive term 

in the formula, in the descent properties, and improved numerical stability of the formula. The procedure also preserved 

competitive convergence behavior as well as lowering computational cost, suggesting its robustness and scalability. 
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