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1. INTRODUCTION 

Today, with the widespread use of mobile phones and computers and the expansion of the Internet platform for the 

public, people's use of these two technologies has increased day by day. Today, there are few people who do not use the 

Internet to do their daily affairs, and they use the Internet for things such as online payments, social networks, online 

shopping, applications, watching movies or online games, etc., which causes Internet communication is always 

increasing. This issue has caused the volume of information transferred through the Internet to increase [1,2]. The 

existence of this technology has encouraged people to abuse technology and raise the issue of bad people. The increase 

of malware that uses the Internet is increasing day by day and has turned this issue into a new threat [3]. Today, malwares 

have created many anomalies in the field of information technology, and have caused many problems in the functioning 

of systems, in such a way that the existence of malwares has become a fundamental problem, and until today, countries 

have suffered many losses due to the damage caused by malwares. Until now, societies have spent high costs on equipping 

networks and information systems so that they can find a way to deal with these malwares. Using machine learning to 

detect malware has shown to be one of the most successful approaches in this regard, as it has demonstrated a high degree 

of accuracy in this domain [4,5]. One of the biggest and most dangerous risks developed in the context of the Internet of 

Things nowadays is malware. The prevention of this malware has been the top priority for those in charge of building 

Internet security, as its existence has caused numerous damages to businesses, regular software, and various nations. 

Although the Internet is growing in importance in people's lives, users must constantly guard against security risks 

brought on by malware [6]. Various malware such as botnets, viruses, Trojan horses, etc. are always increasing and 
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signature-based antivirus systems have not been effective in detecting this amount of variety in malware. Despite the 

expansion and updating of a large volume of these malwares all over the world, the methods of statically checking users' 

files and also analyzing malicious files are not economical and efficient in any way, malware detection should be done 

automatically [7]. Malware detection using automatic behavior using machine learning has become a suitable solution 

[8,9]. In order to obtain high accuracy in malware detection, deep learning has been applied in this work. Specifically, 

the combination of LSTM and a deep convolutional neural network has been used to achieve high accuracy in this sector. 

 

2. LITERATURE REVIEW 

Malicious software, sometimes referred to as malware, puts computer networks and systems' security and integrity 

at risk. The unceasing march of technology and the digital world has left the spread and sophistication of malware in its 

wake. Individuals, organizations, and governments everywhere now count malware as one of their top concerns. It 

threatens to compromise data judged sensitive, to disrupt systems where malware is found, and—most important of all—

to terrify ordinary users who just want to get by in an online world [10]. The malware problem demands attention and 

fresh thinking, and in recent years, this originates from the domains of deep learning and machine learning. Malware 

detection is fundamentally a categorization challenge. Essentially, the goal is to distinguish the desirable files from the 

undesirable ones. A file is deemed trustworthy if it is considered good, while it is considered untrustworthy if it is 

considered bad [11]. 

Developing a solid grasp of these fundamental ideas allows us to lay the groundwork for the detailed investigation 

and experimentation in the chapters following this one [12]. With this work, we hope to make an ongoing and valuable 

contribution to the larger cybersecurity effort and, more specifically, for the development of highly effective and efficient 

techniques for detecting malware. The domain of malware detection has made substantial advancements with the 

implementation of deep learning methodologies, particularly hybrid models that incorporate Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Convolutional Neural Networks (CNNs), due to 

their capacity to extract spatial characteristics, exhibit excellent performance when employed for analyzing malware 

"images." LSTMs exhibit proficiency in this aspect as well; nevertheless, their optimal performance is achieved when 

they handle data sequences [13].  

Recent research has demonstrated that architectures combining convolutional neural networks (CNNs) with long 

short-term memory (LSTM) networks provide better results than traditional approaches, especially when dealing with 

complicated datasets that comprise a high-dimensional feature space [14]. CNNs are a natural fit for working with visual 

data, such as images of malware binary code, because they are intrinsically good at capturing the hierarchical patterns 

present in that kind of data. After the kind of high-level feature extraction that a CNN can provide, an LSTM network---

good at handling sequential data and modeling important temporal dependencies—handles the modeling of what happens 

in the "time space" of malware. When a malware behavior dataset was pushed through this kind of combined architecture, 

detection accuracy came out to be around 99.6% [15]. 

This shows how well these models can tell apart good software from bad, even when the bad software has been 

subtly changed to try to defeat the detection system. The recent research I reviewed on this topic stated that the success 

of CNN-LSTM models also ties closely to the quality of the training data, as well as the quality of the preprocessing 

steps, like feature selection and dimensionality reduction. By selecting the most relevant and hence important features, 

CNN-LSTM models can concentrate on the critical characteristics of the data and still have the appearance of a detection 

system that runs with a computationally feasible overhead [16]. 

The literature on malware detection that employs convolutional neural networks (CNNs) with long short-term 

memory (LSTM) networks is not particularly extensive. However, the hybrid use of these models is steadily expanding, 

with a few notable recent studies particularly illuminating the topic. For instance, Kumar and Bgane's 2021 paper places 

the hybrid CNN-LSTM model in the forefront of malware detection methods for both accuracy and overall performance 

[17]. In another recent study, Mehrban and Ahadian (2021) place the same sort of model at the top regarding effectiveness 

but also implementational suitability across a range of environments—a particularly important criterion to consider when 

handling time-varying sequences in malware data [18]. 

Zhang et al. went deeper into the study and tried to combine the power of natural language processing and dynamic 

picture representations with the state-of-the-art CNN-LSTM model to see if it could do even better in diagnosing dynamic 

malware [19]. Everything they did went one step further toward addressing a fundamental question: Can we take a model 

that has been shown to work well in image and text (i.e., picture or word) classification and use it effectively in malware 

detection? The answer seems to be: maybe, with one caveat [20]. If a natural language processing or picture-based model 

could diagnose dynamic malware effectively, it would be because the natural language text or image data used to train 

the model bore some significant resemblance to data generated by real dynamic malware. And that's a major assumption. 
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3. METHODOLOGY OF THE RESEARCH 

Malicious software is more prevalent than ever in our digital world, and traditional detection techniques are falling 

short. Methodical signature-based detection was once satisfactory, but it has now become an inadequate means of keeping 

pace with constantly evolving malware. Therefore, we introduce here a new method for detecting malware that takes 

advantage of a convolutional neural network model, AlexNet. We combine it with a recurrent neural network model, the 

short-term long-term memory (STLTM) network, to achieve feature extraction and then classification of the samples 

used in the study. STLTM has previously shown promise for the task of classifying time-evolving signals and can easily 

be retrained to handle more samples [21]. 

In the method we propose, the large-scale AlexNet model is used to categorize a massive quantity of malware. This 

is the first step of our main scheme. After we trained the AlexNet on that large dataset, we then took that knowledge—

the ability of the AlexNet to differentiate between various malevolent files (i.e., viruses, worms, trojans, ransomware, 

spyware, adware, etc.)—and used it as a means to extract features from those files. We then fed those features into a 

long-short-term memory neural network in order to classify the files as either 'malicious' or 'not malicious [22]. 

This approach has its benefits because of two things: AlexNet's capacity for automatically learning pertinent features 

from basic malware data and the long-short-term memory network's ability to effectively handle the temporal 

dependencies of those features. We think that by linking these two strengths together, we can achieve an even greater 

detection accuracy and robustness against totally new and unseen DL-based malware types [23]. To sum up, we have 

devised an innovative approach using an unusual combination of AlexNet and a long-short-term memory network.The 

proposed method holds promise for combating the ever-evolving landscape of malware threats, offering improved 

accuracy and adaptability. The following sections show the proposed approach in more detail. 

 

 

3.1 STRUCTURE OF THE PROPOSED METHOD 

As noted in the introduction, the new part of this thesis for malware classification is the use of pre-trained deep 

neural network AlexNet for feature extraction and long-term and short-term memory network for classification. The 

steps of the suggested model are explained in Figure (1). 

 

 

 
 

 

FIGURE 1. - Structure of the proposed system 
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3.2 PREPROCESSING 

When using AlexNet or any deep neural network, it is essential to pre-process the input images to ensure they meet 

the network's requirements [24]. A common pre-processing step is to resize input images to a certain dimension. The 

convolutional neural network architecture depicted by AlexNet was trained on the ImageNet dataset. The images in that 

dataset were at a resolution of 227x227 pixels. When using the AlexNet architecture, it is therefore necessary to adjust 

the size of the input images so that they are of a consistent dimension. We use as a pre-processing step the image resizing 

so that the images fed into the neural network have the same fixed size and are in a standardized format. 

 

3.3 FEATURE EXTRACTION USING ALEXNET DEEP NEURAL NETWORK 

Feature Extraction Using Alexnet Deep Neural Network 

The architecture of AlexNet, a type of convolutional neural network, attained much notoriety because of its 

successful outcome in the large-scale visual recognition challenge, which was spread over more than a million images 

and thousands of classes and which took place in 2012. This architecture also allowed deep learning to become the 

predominant approach for computer vision tasks, and its structure is still referenced and used in many ways. Following 

is an overview of the layers that make up the AlexNet architecture. 

 

1. Alexnet Deep Neural Network Architecture: 

•  Input Layer: 

The first layer of the network accepts the initial input of the image and preps it for subsequent steps. In the case of 

AlexNet, the image passed to the network was a 227x227x3 chunk of space. That is, it was a segment of space that was 

227 units wide, 227 units tall, and 3 units deep, where depth represented the three-color channels—red, green, and blue—

that were used to form the image. 

• Convolutional Layer 1: 

AlexNet consists of five convolutional layers, denoted Conv1 to Conv5. Each convolutional layer extracts features 

by convolutionally convolving the learned filters with the input image. Convolutional layers use different filter sizes and 

number of filters to capture different levels of spatial information and features. Convolution follows nonlinear activation 

functions (modified linear units) to introduce nonlinearity into the network. 

• Max Pooling Layers: 

After each convolutional layer, AlexNet has max pooling layers, denoted by Pool1 to Pool5. The lower scales of 

max pooling feature maps to reduce the spatial dimension while preserving the most prominent features. This helps 

improve translation invariance and reduce the computational cost of subsequent layers. 

• Local Response Normalization (LRN): 

AlexNet applies local response normalization after the first and second convolutional layers. LRN normalizes the 

responses to the local neighborhood in the feature maps and enhances the variance between different features. This 

normalization helps improve the generalization ability of the network. 

 

• Fully Connected Layers: 

After the convolutional and pooling layers, AlexNet consists of three fully connected layers: FC6, FC7, and FC8. 

Each fully connected layer contains a large number of neurons, forming a deep neural network. These layers act as a 

classifier, representing high-level features and learning complex sets of low-level features extracted from previous layers. 

Dropouts: 

The dropout setting is applied after the first two layers (FC6 and FC7) of AlexNet are fully connected. Dropout 

randomly sets a portion of neurons to zero during training, preventing overfitting and improving the generalization ability 

of the model. 

• Softmax layer: 

The last layer of AlexNet is the Softmax layer (FC8) that generates a probability distribution over the class labels. It 

assigns a probability to each class, indicating the probability that the input image belongs to that class. The number of 

neurons in this layer corresponds to the number of classes of the classification task. 

• Output layer: 

The final AlexNet layer is a fully connected layer containing 1000 neurons, one for each class in the ImageNet 

dataset. This layer generates output probabilities for each class based on the features learned by the previous layers [25]. 

 

2. Transfer learning: 

In AlexNet, transfer learning refers to the process in which the weights and features learnt from a model trained on 

a big dataset, like ImageNet, are transferred to a separate but similar task or dataset. Instead of constructing a new model 

from start, transfer learning allows us to initialize the new model using the weights of the pre-trained model and then 

retrain the model on the new task. The main premise of transfer learning is that, in a deep neural network, the features 

learned at lower levels (e.g., the early convolutional layers) are general enough to be useful for a variety of vision tasks. 

A deep neural network is also a good candidate for transfer learning because its lower-level features are learned with 
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little risk of overfitting. By using pre-trained weights, we can exploit these general features and reduce the amount of 

training required on new datasets. The initial pre-trained output layer of AlexNet, which corresponds to the classification 

layer trained on the original dataset, is discarded. This allows us to replace it with a new output layer that is more suitable 

for the target task. Optionally, a certain number of layers in the pre-trained AlexNet can be frozen to avoid updating their 

weights during the fine-tuning process. Freezing lower layers that capture general features is a common practice because 

these layers are expected to remain highly effective on new work with minimal changes [26]. 

 

 

3.4 DIMENSIONALITY REDUCTION USING LINEAR DISCRIMINANT ANALYSIS (LDA). 

Currently, we have access to clean, acceptable data for our machine learning model, however processing high-

dimensional datasets can be computationally expensive and time-consuming. In such circumstances, there may be a risk 

of overfitting, which can be solved by limiting the number of dimensions. Linear discriminant analysis is a dimensionality 

reduction technique in machine learning that is used to separate two or more groups of data. It is a supervised learning 

algorithm that accepts labeled input data and tries to identify the optimal linear combination of features that separates the 

classes as much as feasible. The principal purpose of linear discriminant analysis is to take high-dimensional data and 

project it into a lower-dimensional space while retaining as much discriminative information between the classes as intact 

as feasible [27]. This is a valuable thing to perform when you want to minimize the complexity of your data and when 

you want your machine learning algorithms to work better, particularly in circumstances when you’ve got significantly 

more features than samples. What linear discriminant analysis does is identify a linear combination of the characteristics 

that optimally separates the classes; it measures how well the classes are separated when the data are projected onto the 

space defined by the linear combo. In general, linear discriminant analysis can be a valuable approach for reducing data 

dimensionality. In machine learning tasks, where class separation is a key issue. It can be used as a pre-processing step 

before running other machine learning algorithms or as a stand-alone approach for classification jobs. 

 

3.5 DATA SEGMENTATION INTO TRAINING AND TESTING SETS 

When the model is trained on the labeled set, its performance is tested on unseen data. We separate a set into a 

training set and a test set, and use the training set to train the model and the test set to evaluate its performance. This helps 

to generalize the model estimation to fresh data. In this thesis, the training and testing data are located separately in the 

dataset. 

 

3.6 DATA CLASSIFICATION USING FEATURES EXTRACTED FROM DEEP LSTM NETWORK 

Now that the important and effective features have been extracted by the pre-trained AlexNet and we have used 

transfer learning technique, it is time to classify these features into a classification model in order to recognize the 

malware and assign it to 25 classes. In this study, we use a type of recurrent neural network called Long Short-Term 

Memory Network [28]. This network is designed to solve the vanishing gradient problem in traditional recurrent neural 

networks. In traditional RNNs, this problem occurs when the gradient signal decays significantly and is propagated 

repeatedly. Long Short-Term Memory Network layers are able to learn long-term dependencies in sequential data using 

a combination of memory cells and gating mechanisms. Below, the main components of Long Short-Term Memory 

Network layers will be discussed. Typically, the Long Short-Term Memory Network architecture in deep learning has 

multiple layers. Each layer does a specific job in handling the input data and, importantly, in managing the dependencies 

over time.  

So, first off, the LSTM network has what's called an input layer. This layer is the starting point for any data that is 

fed into the network. The input layer takes sequential data—like the price of oil over time, for instance—and pushes it 

forward into the network. 

The principal element of the network is the long-term and short-term memory (LSTM) layer. This layer is made up 

of a set of short-term memory network units that, first, model long-term relationships among inputs, and second, record 

the temporal patterns that make up the input sequence. They accomplish this using a kind of internal memory, where each 

memory cell can hold a piece of information and where the network as a whole can update its remembered information 

across the sequence. Between the input layer and the output layer, there can be one or more hidden layers of short-term 

memory units. 

The layers that are not visible carry out secret calculations and use secret activations. Using secret activations, the 

hidden layers perform intermediate transformations on the input and “learn” complex, high-level features of the sequence. 

The output layer of a short-term memory network is what gives the final answer. It can give either one answer or several 

answers, depending on the network's task—say, for instance, oil price forecasting. 

In regression tasks, an individual output unit could represent the predicted price of oil, whereas our classification 

tasks might utilize multiple output units, each with an appropriate activation function, to represent the various classes or 

categories that we wish to identify. Functions are applied to the outputs of each layer to introduce nonlinearity into our 

model and allow it to learn the complex relationships in our data. We would usually perform this step in a long-term 

dependency network. Functions we performed in these networks were typically kept simple; for instance, we often used 
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the sigmoid function, which is a "squashing" function that keeps values in a manageable range and, along with the "tanh" 

(hyperbolic tangent) function, is one of the most common activation functions in feedforward neural networks. 

To prevent deep learning models from overfitting, the regularization technique known as "dropout" is employed. 

During training, a certain percentage of the connections between units is randomly and temporarily removed. This reduces 

the network's dependence on specific units and improves the overall generalization ability of the model. We can interpret 

dropout as training a large "committee" of subnetworks, which is equivalent to training a single model with a highly 

nonlinear, irregularizable function. Dropout layers can be placed between either short-term memory networks or hidden 

layers to regularize the network. 

 

 

 

4. EVALUATION OF THE PROPOSED METHOD 

This section reviews the findings of the research reported in the study. The research's primary aim was to categorize 

malware based on pictures. To achieve this goal, a hybrid method was employed. This hybrid method comprised using a 

deep AlexNet neural network to extract features from the images and then making the final classification using an LSTM 

network. The second part of the study presented the input datasets. For the malware classification task, the input dataset 

contained pictures that had been collected of 25 different kinds of malware. The dataset contained different instances of 

each type of malware and served as the input for the model. 

In the third section, we will lay out the evaluation criteria employed in this project. These criteria allow us to assess 

the (malware classification model's) performance quality and to reach defensible judgments about the model's accuracy 

and overall performance. In the fourth section, we will present the simulation results. We will report the model's accuracy 

and the model's correct detection rate, along with several pertinent performance-related metrics. By studying this section, 

you will understand how well the model works generally, and you will also appreciate the model's ability to work well 

under several different (but equally valuable) conditions. 

The final section will juxtapose the strategy advanced in this research with other strategies employed to sort malware. 

The basis of this juxtaposition is the performance and accuracy of the model in pinpointing and sorting not-a-virus files, 

thus allowing us to check the operational efficiency and applicability of the method proposed in this paper. 

 

 

 

4.1 DATASET DESCRIPTION 

In this work, we utilized the Malimg dataset. This dataset serves as a well-known benchmark in the malware analysis 

and computer security realm. Specifically tailored for image-based malware detection and classification, the dataset offers 

a selection of grayscale images. Each image is a screenshot of a host's screen, taken just prior to the malware being 

detected and removed. 

The Malimg dataset has some key characteristics that are beneficial for a few different types of experiments. First, 

it is large enough—almost 10,000 images—to provide a good sample of the different types of malware in the dataset. 

Second, it covers 25 malware families, each one well-represented across the image set. Third, the images are all in 

grayscale, which produces a nice consistency to allow direct comparisons across the images. Finally, these images are in 

the public domain and can be accessed for free, making the dataset reproducible across different labs for a different set 

of experiments [29]. 

Format and Content: All images in the Malimg dataset are in the PNG format. The PNG format is a commonly used 

format for lossless image storage. In terms of image content, each image in the dataset is a screenshot of a malware-

infected host’s screen. This means that each image in the dataset shows the visual appearance of the malware while it is 

running on the victim’s device. The valuable visual information captured by the images can serve as a basis for conducting 

image-based malware analysis. 

Size of the Images: The Malimg dataset contains images with a fixed size of 256 x 256 pixels. This standard size 

guarantees uniformity and makes for easy image preprocessing and analysis. The availability of the Malimg dataset has 

made it possible to use image-based methods for malware detection and classification in cyber security research. Image-

based methods are now being introduced by a number of research groups as a potentially useful approach for testing and 

assessing the performance of algorithms that are developed to detect and classify malware. The diversity of the datasets 

used across malware families ensures a comprehensive assessment of the robustness and generalization of their proposed 

models. 
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Table 1. - An example of a table 

 

Seq. Type of malware Class 

1 Worm Allaple.L 

2 Worm Allaple.A 

3 Worm Yuner.A 

4 PWS Lolyda.AA1 

5 PWS Lolyda.AA2 

6 PWS Lolyda.AA3 

7 Trojan C2Lop.P 

8 Trojan C2Lop.gen!G 

9 Dialer Instantaccess 

10 
Trojan 

Downloader 
Swizzor.gen!I 

11 
Trojan 

Downloader 
Swizzor.gen!E 

12 Worm VB.AT 

13 Rogue Fakcrean 

14 Trojan Alucron.gen!J 

15 Trojan Malex.gen!J 

16 PWS Lolyda.AT 

17 Dialer Adialer.C 

18 
Trojan 

Downloader 
Wintrim.BX 

19 Dialer Dialplatform.B 

20 
Trojan 

Downloader 
Dontovo.A 

21 
Trojan 

Downloader 
Obfuscator.AD 

22 Backdoor Agent.FYI 

23 Worm: AutoIT Autorun.K 

24 Backdoor Rbot!gen 

25 Trojan Skintrim.N 
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FIGURE 2. - Some of the malware in the Malimg dataset 

 

4.2 EVALUATION CRITERIA 

Determining certain key metrics is a familiar and necessary part of ensuring that classification systems work 

correctly. In the area of malware detection, these "evaluation criteria" help us understand how good (or bad) different 

detection methods are. They tell us something about the effectiveness of detectors and the efficiency of different detection 

techniques (and "algorithms," in the case of computer science). Using evaluation criteria, we can figure out who (or what) 

performed best overall, who (or what) is most reliable, and who (or what) is most efficient. In this thesis, we use four key 

metrics: precision, recall, accuracy, and F1 score. 

Correctness: This factor usually measures how well the system does its job and figures the percentage of samples 

that are accurately categorized (are true positives and negatives) out of the total number of samples. While correctness is 

a reasonable way to judge system performance, it can sometimes give a false impression of how well a system actually 

works, especially when used with imbalanced datasets. In datasets where there are a lot more of the valid files than there 

are malware samples (or the other way around), when the system fails to detect most (or all) of the instances of the other 

class, it can still achieve and show a high percentage of correctness. 

When it comes to determining just how accurate the predictions are, positive ones that a malware detection system 

makes, there is a criterion we look at called precision. It is a metric that I compute based on how many true positives 

there are and how many true positives and false positives there are altogether. To put it another way, precision tells me 

how many of the samples that a system identified as positive are actually malware. When it comes to the system that we 

built, it has a precision of 97.3 percent. So, of the samples that we identified as malware, 97.3 percent were actually 

malware and not benign files. 

Recall, also known as sensitivity or the true positive rate, indicates how successfully the system recognizes all the 

positive samples in a dataset. The recall ratio displays how many of the found samples are accurate (true positives) versus 

how many are not (false negatives). In the context of malware detection, recall analyzes whether a system can identify as 

malicious all the actual malware samples in the world. A high recall for a malware detection product suggests that most 

malware samples are discovered and that the device has a low false negative rate. 

F1-score: The F1-score is a composite metric that combines precision and recall. Unlike recall, accuracy gives the 

erroneous positive a lot of weight, whereas the recall gives the false negative a lot of weight. Both of these faults are 

significant when evaluating a system, especially an unbalanced dataset, because they reflect two alternative ways the 
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system can fail. The F1-score gives the same weight to the system's performance on both precision and recall, hence the 

F1-score evaluates the system with precision and recall. 

 

4.3 ANALYSIS OF THE RESULTS 

In this section, we will examine the step-by-step modeling results of the proposed method. Therefore, in the first 

step, we extract suitable features for classification using AlexNet deep network. The AlexNet network is a very powerful 

architecture of a combination of convolutional layers and other layers required in the structure of a deep network, which 

is used in this study to extract quality features without the need for additional knowledge for feature extraction. is In this 

regard, the first step is to prepare the images so that they match the input layer of the network. In fact, the input layer of 

the AlexNet network receives images with a length and width of 227x227 and with 3 color bands of red, green and blue. 

On the other hand, the images in the malimg dataset have different sizes. Among these, some images that have dimensions 

smaller than the input layer of AlexNet are brought to the desired dimensions using interpolation and scaling. In addition, 

most of the images have larger dimensions, which we convert to the required dimensions by calculating the average of 

the pixels around each corresponding pixel in the image with a higher resolution and using an anti-aliasing filter. Also, 

as seen in Figure 2, the input images of the AlexNet network are black and white, but the AlexNet network receives 

images with 3 color bands as input. Therefore, by repeating each image from the data set in all 3 bands, we form a color 

image in such a way that all bands have the same value in each pixel. Finally, in order to use the AlexNet network for 

feature extraction, first the last two layers of this network, namely the Fully Connected and Softmax layers, which are 

related to the classification of Cifar dataset classes, are removed and then the resulting network is It is set correctly. The 

output of this network, which is extracted from its last convolutional layer, will be the extracted features. Figure 3 shows 

these features for 6 different classes in the dataset. 

 

 

 
 

FIGURE 3. - Bar chart of extracted features for six samples from 6 different classes. 

 

As seen in Figure 3, the AlexNet network extracts 1000 features for each sample. On the other hand, according to 

this form, some of these features may not have much effect on data resolution, and reducing these features can help 

improve accuracy and reduce complexity. In this regard, we will use the method of linear discriminant analysis. The first 
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step in the linear discriminant analysis method is to calculate the inter-class and intra-class dispersion matrices. Then, 

with the help of these two matrices, we calculate the eigenvalues and by multiplying the resulting matrix by the matrix 

of features, we form a new set with 1000 other features. This new feature set will concentrate information suitable for 

differentiation in a few special features and scatter additional information in other features. Therefore, in the first step, 

we will sort the data set in the order of the resulting eigenvalues, and then in order to reduce the features by 88%, we will 

keep the first 120 features and remove the other features. The reason for choosing 88% for this purpose is the relative 

complexity of the problem and further reduction of features can lead to the removal of required information and decrease 

in accuracy. Figure 4 shows the new features selected for the same 6 samples in Figure 3. As can be seen, the separation 

of classes has been significantly improved by using these features. As an example, the first feature for each class is within 

a certain range, and with the help of this feature alone, many classes can be distinguished. In addition to this feature, 120 

other features have also been extracted, each of which contributes to this separation in some way, and it can be concluded 

that in addition to reducing the dimensions of the input and helping to reduce the complexity, the separation We also 

increased the acceptability of the data and we can expect a suitable performance for the final classification using LSTM. 

 

 

 
FIGURE 4. - Bar chart of extracted features for six samples from 6 different classes. 

 

Finally, after the complete processing of the data set, we train an LSTM network to classify different classes. In this 

context, it is vital to set some main parameters for LSTM. The first parameter is the learning rate, which was considered 

a low value of 0.0001 for increasing accuracy and not crossing the global optimum. On the other hand, this small value 

causes a slow change of weight and bias parameters during the training process. Therefore, by increasing the number of 

repetitions to 1000, it is possible to ensure that the optimal point is reached. On the other hand, choosing these parameters 

makes the training time extremely long. In order to solve this problem and according to the size of the input data set, we 

set the batch size to 256. Another important parameter is the number of hidden units, which according to the complexity 

of the problem and the size of the input data set, we set a value of 120 for this parameter, which of course increases the 

adjustable parameters and reduces the speed of convergence, and to solve this problem, the algorithm We use rmsprop 

optimization for network training. rmsprop algorithm with very fast and accurate convergence can help to improve these 

issues and achieve a successful training. In the following, we will examine the trained network in order to fully examine 

the proposed method. 
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4.3.1 EXAMINING THE TEST RESULTS AND TRAINING SET BASED ON THE CONFUSION 

MATRIX 

Another technique to check the performance of the system is to utilize a confusion matrix. This matrix gives a precise 

split of the expected and actual class scores, allowing for a comprehensive evaluation of the malware detection system. 

The confusion matrix for malware detection consists of four basic elements: 

True Positive (TP): Shows the number of malware samples that were accurately recognized as malware by the 

detection system. 

True Negatives (TN): This element shows the number of genuine file samples that were accurately categorized as 

harmless by the detection system. In other words, it illustrates the circumstances in which the system accurately selected 

safe files. 

False Positives (FP): This element shows the number of genuine file samples that were wrongly flagged as malware 

by the detection system. 

False Negatives (FN): This aspect shows the number of malware samples that were disregarded by the detection 

system or detected as genuine files. These scenarios arise when the system does not recognize the presence of malware. 

By grouping these elements in a table, the confusion matrix provides a clear visual depiction of the categorization 

performance. Also, using the entries in this matrix, the evaluation criteria described in Section 4-2 can be determined as 

follows. 

 

 

 

 

Accuracy =  
TPy+TNy

TPy+TNy+FPy+FNy
                                            (1) 

 

Precision =  
1

nc
∑ (

TPy

TPy+FPy
)y                                                  (2) 

 

Recall =  
1

nc
∑ (

TPy

TPy+FNy
)y                                                       (3) 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×(Precision×Recall)

Precision+Recall
                                              (4) 

 

 

The confusion matrix of the proposed method for the training and test data sets are shown in Figures 5 and 6. 

 

 

 
 

 

FIGURE 5. - Education clutter matrix 
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FIGURE 6. - Test clutter matrix 

 

 

As can be seen, the number of false detection samples on the training dataset is 26 out of 13250 samples, which 

shows the excellent performance of the proposed method. In addition, on the testing dataset, only 9 out of 1750 samples 

have signs of false diagnosis. As a result, the method we proposed has yielded strong performance metrics. 

 

 

 

4.3.2 EXAMINING THE RESULTS OF THE TEST AND TRAINING SET BASED ON THE 

PERFORMANCE CHARACTERISTIC CURVE 

The performance of a classification model, particularly in malware prediction, can be assessed using a graphical 

representation known as the operating characteristic curve (ROC). The ROC curve provides a means of appraising the 

balance between the true positive rate (sensitivity) and the false positive rate across various classification thresholds. 

From our analyses of these curves, we are able to determine the best cutoff values with which to classify our test samples 

as "malware" or "nonmalware." Furthermore, the ROC curve gives us insight into the overall accuracy of our model—it 

tells us how well our model is able to predict which samples are malware and which are not. 

 

To draw a ROC curve for malware prediction, follow these steps: 

 

1. Get the model predictions: Train the classification model on a dataset that has features and corresponding 

labels (indicating which samples are malware and which are not). Then use the model to generate either 

probability scores or predicted labels for each sample in the dataset. 

 

2. Calculate the TPR and FPR: For the model predictions, calculate the true positive rate (TPR) and false 

positive rate (FPR) at various classification thresholds. The TPR is the proportion of true malware samples 

that the model identifies as malware. The FPR is the proportion of benign samples that the model 

erroneously classifies as malware.It is worth noting that the ROC curve is plotted for each class in the 

model. 

 

Connecting different points to each other: Connecting each point in the ROC plot to form a curve by repeating the 

ranked predictions. This curve shows the trade-off between TPR and FPR for different thresholds. The closer the plotted 

curves are to the upper and left corner of the graph, the better the model performs in recognition and classification. In 

this study, as can be seen in Figures 7 and 8, the plotted curves are 45 degrees higher than the baseline, demonstrating 

the optimal performance of the model in detecting malware on both the training and test datasets. 
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FIGURE 7. - Performance characteristic curve of training data 

 

 
FIGURE 8. - Performance characteristic curve of test data 
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4.3.3 EXAMINATION OF THE RESULTS OF THE TESTS AND TRAINING SERIES BASED ON THE 

APPROVED EVALUATION CRITERIA 

In the last step, we will examine the proposed method using the criteria introduced in Section 2-4 and plot the results 

of the training and test data in the form of bar graphs in Figures 9 and 10. As can be seen from Figure 9, all the criteria 

in the training dataset have reached 99.8%, and in addition, according to Figure 10, the same values in the test dataset are 

about 99.5%. The results show not only the very good performance of the proposed method by achieving high accuracy, 

but also the lack of overfitting of the proposed method, because all the criteria in the test dataset have almost the same 

performance as the training dataset. 

 

 
 

FIGURE 9. - Final review of training data 

 

 
 

FIGURE 10. - Final review of test data 
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4.4 COMPARISON OF THE PROPOSED METHOD WITH PREVIOUS STUDIES 

In today's linked digital world, the threat of malicious software, known as malware, poses major risks to individuals, 

organizations, and even the economy of society. Malware is any software designed to destroy, disrupt, damage, or gain 

unauthorized access to computer systems, networks, or data. The rapid evolution of malware, coupled with its 

increasingly sophisticated nature, requires robust measures to identify these threats and mitigate their effects effectively. 

Therefore, it is very important to review and study the research that has been done in this direction as well as to try to 

develop existing approaches. 

Table 2 highlights the methodologies, objectives, and performance differences between the studies while focusing 

on their distinct contributions to cybersecurity. 

 

 

Table 2. - Comparison of the proposed method with other two studies 

 

 

Study 1 [30] Study 2 [31] Proposed Method 

Android Malware Detection 

Network Intrusion Detection 

(ID) 

Malware Classification Using Image 

Data 

Detect Android malware using 

RNN based on static features 

Classify and predict malicious 

network threats using CRNN 

Classify malware types using AlexNet 

and LSTM combination 

Combines four static features 

(permissions, API calls, etc.) and 

uses RNN 

Hybrid CNN-RNN (CRNN) 

architecture for ID system 

Uses AlexNet for feature extraction, 

LDA for dimensionality reduction, 

followed by LSTM for classification 

2,820 Android applications 

(malware and benign samples) CSE-CIC-IDS2018 (ID dataset) MaliMG dataset (malware images) 

Flexible publishing policy and lack 

of restrictions in Google Play make 

Android more vulnerable 

Combines convolutional 

features (CNN) with temporal 

features (RNN) for ID detection 

Image preprocessing, feature extraction 

with CNN, and classification with 

LSTM 

98.58% detection accuracy 

97.75% accuracy on ID 

detection 

99.80% training accuracy, 99.49% 

testing accuracy 

Novel RNN architecture 

outperforming traditional ML 

algorithms 

CRNN hybrid model integrating 

CNN and RNN for superior ID 

system 

Integration of deep image feature 

extraction with time-series classification 

via LSTM 

High accuracy in Android malware 

detection 

Effective handling of network 

intrusion attacks with temporal 

patterns 

High classification accuracy and strong 

generalizability in detecting diverse 

malware types 

Limited to Android malware 

Limited to network intrusion 

detection 

Specific to image-based malware 

classification 

 

 

 

5. CONCLUSION 

Malware, malicious software designed to disrupt, damage, or gain unauthorized access to computer systems, poses 

a substantial threat to individuals, businesses, and the entire cybersecurity landscape. The ability to effectively categorize 

and identify different types of malware is vital to building effective defensive systems and limiting potential hazards. In 

this article, we describe a unique technique for classifying malware from photos using a mix of AlexNet convolutional 

neural network and LSTM network. 

The first stage in our technique is data preprocessing. We verify that our photos are of suitable and consistent size, 

so as to work correctly with the desired network architecture. We then employ AlexNet—an image classification network 

originally built for categorizing ordinary objects—to work on our photographs of malware. Rather of classifying the 

photos straight, we utilize AlexNet to extract the top 1000 features. From there, we apply linear discriminant analysis to 

narrow down to 120 features, which are perhaps more useful for classification than the 1000 features generated by 

AlexNet. Finally, we employ a long short-term memory (LSTM) network to accomplish the actual classification of the 

photos. 

We carried done experiments using the MaliMG dataset, which comprises a combination of malware samples, to 

judge the performance of our suggested technique. The findings obtained were satisfactory and proved the efficiency of 

the proposed strategy. Our training accuracy was an astonishing 99.80%, demonstrating that our model is able to 

distinguish the patterns and features of malware images with great fidelity. Our test dataset accuracy was also quite strong 

at 99.49%, validating the argument that our method is powerful and generalizes well. 
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The benefits of the suggested strategy are shown in numerous segments. To begin, we used AlexNet. We employed 

its remarkable feature extraction capabilities, which helped us capture nearly all the relevant representations of the 

malware photos and, thus, resulted in an accurate and reliable categorization of them. In reality, the representations we 

retrieved from AlexNet were utilized to classify the photographs with the best accuracy in the contests that we participated 

(1st place in 2016 and 2nd place in 2018). 

Our investigation confirmed the capacity of deep learning approaches to classify malware from photos. Our method's 

excellent accuracy rate implies that it efficiently detects many forms of malware. This research may lead to the creation 

of better, more intelligent methods for identifying and categorizing malware. It might also aid in inventing new, robust 

techniques of identifying malware that can overcome present systems and methods of avoiding detection. In any event, 

since the threat of malware continues to grow, we must apply our cybersecurity approaches and plans with the maximum 

effectively. 
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