

*Corresponding author: br1140057@gmail.com
https://wjcm.uowasit.edu.iq/index.php/wjcm

15

Wasit Journal of Computer and Mathematics Science

Journal Homepage: https://wjcm.uowasit.edu.iq/index.php/WJCM

e-ISSN: 2788-5879 p-ISSN: 2788-5887

Advanced Malware Detection: Integrating Convolutional

Neural Networks with LSTM RNNs for Enhanced Security

Balsam Ridha Habeeb Alsaedi1,*

1 IHEC Iraq, Najaf, 54001, IRAQ

*Corresponding Author: Balsam Ridha Habeeb Alsaedi

DOI: https://doi.org/10.31185/wjcms.288

Received 15 Augest 2024; Accepted 20 September 2024; Available online 30 December 2024

1. INTRODUCTION

Today, with the widespread use of mobile phones and computers and the expansion of the Internet platform for the

public, people's use of these two technologies has increased day by day. Today, there are few people who do not use the

Internet to do their daily affairs, and they use the Internet for things such as online payments, social networks, online

shopping, applications, watching movies or online games, etc., which causes Internet communication is always

increasing. This issue has caused the volume of information transferred through the Internet to increase [1,2]. The

existence of this technology has encouraged people to abuse technology and raise the issue of bad people. The increase

of malware that uses the Internet is increasing day by day and has turned this issue into a new threat [3]. Today, malwares

have created many anomalies in the field of information technology, and have caused many problems in the functioning

of systems, in such a way that the existence of malwares has become a fundamental problem, and until today, countries

have suffered many losses due to the damage caused by malwares. Until now, societies have spent high costs on equipping

networks and information systems so that they can find a way to deal with these malwares. Using machine learning to

detect malware has shown to be one of the most successful approaches in this regard, as it has demonstrated a high degree

of accuracy in this domain [4,5]. One of the biggest and most dangerous risks developed in the context of the Internet of

Things nowadays is malware. The prevention of this malware has been the top priority for those in charge of building

Internet security, as its existence has caused numerous damages to businesses, regular software, and various nations.

Although the Internet is growing in importance in people's lives, users must constantly guard against security risks

brought on by malware [6]. Various malware such as botnets, viruses, Trojan horses, etc. are always increasing and

ABSTRACT: Malware, or malicious software, is a serious threat to people, businesses, and the cybersecurity

environment as a whole. Its purpose is to disrupt, damage, or obtain unauthorized access to computer systems. The

ability to accurately classify and identify different types of malware is very important in developing effective defense

mechanisms and reducing possible risks In order to classify malware from photos, this paper presents a novel approach

that combines the capabilities of an LSTM architecture with the convolutional neural network AlexNet. We began

with preprocessing the data, which included resizing the images for compatibility with the network architecture. Then,

we used AlexNet to extract powerful and meaningful features from the malware images. Although we extracted 1,000

features, we trimmed the list to 120 features using linear discriminant analysis for more efficient and effective

classification. Finally, we trained an LSTM network with the extracted features. The images used in our experiments

contained malware from nine different families. To evaluate the performance of our proposed approach, we conducted

experiments on the MaliMG dataset, which includes a diverse range of malware samples. The obtained results show

the effectiveness of the proposed method. The training accuracy reached a significant value of 99.80%, which shows

the ability of our model to accurately learn patterns and features of malware images. Moreover, the evaluation of the

test dataset yielded a remarkable accuracy of 99.49%, which highlights the robustness and generalizability of our

approach.

Keywords: convolutional neural network, LSTM recurrent neural network, and malware detection.

https://wjcm.uowasit.edu.iq/index.php/WJCM
https://doi.org/10.31185/wjcms.288
https://orcid.org/0009-0005-4251-0644
https://creativecommons.org/licenses/by/4.0/

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 16

signature-based antivirus systems have not been effective in detecting this amount of variety in malware. Despite the

expansion and updating of a large volume of these malwares all over the world, the methods of statically checking users'

files and also analyzing malicious files are not economical and efficient in any way, malware detection should be done

automatically [7]. Malware detection using automatic behavior using machine learning has become a suitable solution

[8,9]. In order to obtain high accuracy in malware detection, deep learning has been applied in this work. Specifically,

the combination of LSTM and a deep convolutional neural network has been used to achieve high accuracy in this sector.

2. LITERATURE REVIEW

Malicious software, sometimes referred to as malware, puts computer networks and systems' security and integrity

at risk. The unceasing march of technology and the digital world has left the spread and sophistication of malware in its

wake. Individuals, organizations, and governments everywhere now count malware as one of their top concerns. It

threatens to compromise data judged sensitive, to disrupt systems where malware is found, and—most important of all—

to terrify ordinary users who just want to get by in an online world [10]. The malware problem demands attention and

fresh thinking, and in recent years, this originates from the domains of deep learning and machine learning. Malware

detection is fundamentally a categorization challenge. Essentially, the goal is to distinguish the desirable files from the

undesirable ones. A file is deemed trustworthy if it is considered good, while it is considered untrustworthy if it is

considered bad [11].

Developing a solid grasp of these fundamental ideas allows us to lay the groundwork for the detailed investigation

and experimentation in the chapters following this one [12]. With this work, we hope to make an ongoing and valuable

contribution to the larger cybersecurity effort and, more specifically, for the development of highly effective and efficient

techniques for detecting malware. The domain of malware detection has made substantial advancements with the

implementation of deep learning methodologies, particularly hybrid models that incorporate Convolutional Neural

Networks (CNNs) and Long Short-Term Memory (LSTM) networks. Convolutional Neural Networks (CNNs), due to

their capacity to extract spatial characteristics, exhibit excellent performance when employed for analyzing malware

"images." LSTMs exhibit proficiency in this aspect as well; nevertheless, their optimal performance is achieved when

they handle data sequences [13].

Recent research has demonstrated that architectures combining convolutional neural networks (CNNs) with long

short-term memory (LSTM) networks provide better results than traditional approaches, especially when dealing with

complicated datasets that comprise a high-dimensional feature space [14]. CNNs are a natural fit for working with visual

data, such as images of malware binary code, because they are intrinsically good at capturing the hierarchical patterns

present in that kind of data. After the kind of high-level feature extraction that a CNN can provide, an LSTM network---

good at handling sequential data and modeling important temporal dependencies—handles the modeling of what happens

in the "time space" of malware. When a malware behavior dataset was pushed through this kind of combined architecture,

detection accuracy came out to be around 99.6% [15].

This shows how well these models can tell apart good software from bad, even when the bad software has been

subtly changed to try to defeat the detection system. The recent research I reviewed on this topic stated that the success

of CNN-LSTM models also ties closely to the quality of the training data, as well as the quality of the preprocessing

steps, like feature selection and dimensionality reduction. By selecting the most relevant and hence important features,

CNN-LSTM models can concentrate on the critical characteristics of the data and still have the appearance of a detection

system that runs with a computationally feasible overhead [16].

The literature on malware detection that employs convolutional neural networks (CNNs) with long short-term

memory (LSTM) networks is not particularly extensive. However, the hybrid use of these models is steadily expanding,

with a few notable recent studies particularly illuminating the topic. For instance, Kumar and Bgane's 2021 paper places

the hybrid CNN-LSTM model in the forefront of malware detection methods for both accuracy and overall performance

[17]. In another recent study, Mehrban and Ahadian (2021) place the same sort of model at the top regarding effectiveness

but also implementational suitability across a range of environments—a particularly important criterion to consider when

handling time-varying sequences in malware data [18].

Zhang et al. went deeper into the study and tried to combine the power of natural language processing and dynamic

picture representations with the state-of-the-art CNN-LSTM model to see if it could do even better in diagnosing dynamic

malware [19]. Everything they did went one step further toward addressing a fundamental question: Can we take a model

that has been shown to work well in image and text (i.e., picture or word) classification and use it effectively in malware

detection? The answer seems to be: maybe, with one caveat [20]. If a natural language processing or picture-based model

could diagnose dynamic malware effectively, it would be because the natural language text or image data used to train

the model bore some significant resemblance to data generated by real dynamic malware. And that's a major assumption.

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 17

3. METHODOLOGY OF THE RESEARCH

Malicious software is more prevalent than ever in our digital world, and traditional detection techniques are falling

short. Methodical signature-based detection was once satisfactory, but it has now become an inadequate means of keeping

pace with constantly evolving malware. Therefore, we introduce here a new method for detecting malware that takes

advantage of a convolutional neural network model, AlexNet. We combine it with a recurrent neural network model, the

short-term long-term memory (STLTM) network, to achieve feature extraction and then classification of the samples

used in the study. STLTM has previously shown promise for the task of classifying time-evolving signals and can easily

be retrained to handle more samples [21].

In the method we propose, the large-scale AlexNet model is used to categorize a massive quantity of malware. This

is the first step of our main scheme. After we trained the AlexNet on that large dataset, we then took that knowledge—

the ability of the AlexNet to differentiate between various malevolent files (i.e., viruses, worms, trojans, ransomware,

spyware, adware, etc.)—and used it as a means to extract features from those files. We then fed those features into a

long-short-term memory neural network in order to classify the files as either 'malicious' or 'not malicious [22].

This approach has its benefits because of two things: AlexNet's capacity for automatically learning pertinent features

from basic malware data and the long-short-term memory network's ability to effectively handle the temporal

dependencies of those features. We think that by linking these two strengths together, we can achieve an even greater

detection accuracy and robustness against totally new and unseen DL-based malware types [23]. To sum up, we have

devised an innovative approach using an unusual combination of AlexNet and a long-short-term memory network.The

proposed method holds promise for combating the ever-evolving landscape of malware threats, offering improved

accuracy and adaptability. The following sections show the proposed approach in more detail.

3.1 STRUCTURE OF THE PROPOSED METHOD

As noted in the introduction, the new part of this thesis for malware classification is the use of pre-trained deep

neural network AlexNet for feature extraction and long-term and short-term memory network for classification. The

steps of the suggested model are explained in Figure (1).

FIGURE 1. - Structure of the proposed system

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 18

3.2 PREPROCESSING

When using AlexNet or any deep neural network, it is essential to pre-process the input images to ensure they meet

the network's requirements [24]. A common pre-processing step is to resize input images to a certain dimension. The

convolutional neural network architecture depicted by AlexNet was trained on the ImageNet dataset. The images in that

dataset were at a resolution of 227x227 pixels. When using the AlexNet architecture, it is therefore necessary to adjust

the size of the input images so that they are of a consistent dimension. We use as a pre-processing step the image resizing

so that the images fed into the neural network have the same fixed size and are in a standardized format.

3.3 FEATURE EXTRACTION USING ALEXNET DEEP NEURAL NETWORK

Feature Extraction Using Alexnet Deep Neural Network

The architecture of AlexNet, a type of convolutional neural network, attained much notoriety because of its

successful outcome in the large-scale visual recognition challenge, which was spread over more than a million images

and thousands of classes and which took place in 2012. This architecture also allowed deep learning to become the

predominant approach for computer vision tasks, and its structure is still referenced and used in many ways. Following

is an overview of the layers that make up the AlexNet architecture.

1. Alexnet Deep Neural Network Architecture:

• Input Layer:

The first layer of the network accepts the initial input of the image and preps it for subsequent steps. In the case of

AlexNet, the image passed to the network was a 227x227x3 chunk of space. That is, it was a segment of space that was

227 units wide, 227 units tall, and 3 units deep, where depth represented the three-color channels—red, green, and blue—

that were used to form the image.

• Convolutional Layer 1:

AlexNet consists of five convolutional layers, denoted Conv1 to Conv5. Each convolutional layer extracts features

by convolutionally convolving the learned filters with the input image. Convolutional layers use different filter sizes and

number of filters to capture different levels of spatial information and features. Convolution follows nonlinear activation

functions (modified linear units) to introduce nonlinearity into the network.

• Max Pooling Layers:

After each convolutional layer, AlexNet has max pooling layers, denoted by Pool1 to Pool5. The lower scales of

max pooling feature maps to reduce the spatial dimension while preserving the most prominent features. This helps

improve translation invariance and reduce the computational cost of subsequent layers.

• Local Response Normalization (LRN):

AlexNet applies local response normalization after the first and second convolutional layers. LRN normalizes the

responses to the local neighborhood in the feature maps and enhances the variance between different features. This

normalization helps improve the generalization ability of the network.

• Fully Connected Layers:

After the convolutional and pooling layers, AlexNet consists of three fully connected layers: FC6, FC7, and FC8.

Each fully connected layer contains a large number of neurons, forming a deep neural network. These layers act as a

classifier, representing high-level features and learning complex sets of low-level features extracted from previous layers.

Dropouts:

The dropout setting is applied after the first two layers (FC6 and FC7) of AlexNet are fully connected. Dropout

randomly sets a portion of neurons to zero during training, preventing overfitting and improving the generalization ability

of the model.

• Softmax layer:

The last layer of AlexNet is the Softmax layer (FC8) that generates a probability distribution over the class labels. It

assigns a probability to each class, indicating the probability that the input image belongs to that class. The number of

neurons in this layer corresponds to the number of classes of the classification task.

• Output layer:

The final AlexNet layer is a fully connected layer containing 1000 neurons, one for each class in the ImageNet

dataset. This layer generates output probabilities for each class based on the features learned by the previous layers [25].

2. Transfer learning:

In AlexNet, transfer learning refers to the process in which the weights and features learnt from a model trained on

a big dataset, like ImageNet, are transferred to a separate but similar task or dataset. Instead of constructing a new model

from start, transfer learning allows us to initialize the new model using the weights of the pre-trained model and then

retrain the model on the new task. The main premise of transfer learning is that, in a deep neural network, the features

learned at lower levels (e.g., the early convolutional layers) are general enough to be useful for a variety of vision tasks.

A deep neural network is also a good candidate for transfer learning because its lower-level features are learned with

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 19

little risk of overfitting. By using pre-trained weights, we can exploit these general features and reduce the amount of

training required on new datasets. The initial pre-trained output layer of AlexNet, which corresponds to the classification

layer trained on the original dataset, is discarded. This allows us to replace it with a new output layer that is more suitable

for the target task. Optionally, a certain number of layers in the pre-trained AlexNet can be frozen to avoid updating their

weights during the fine-tuning process. Freezing lower layers that capture general features is a common practice because

these layers are expected to remain highly effective on new work with minimal changes [26].

3.4 DIMENSIONALITY REDUCTION USING LINEAR DISCRIMINANT ANALYSIS (LDA).

Currently, we have access to clean, acceptable data for our machine learning model, however processing high-

dimensional datasets can be computationally expensive and time-consuming. In such circumstances, there may be a risk

of overfitting, which can be solved by limiting the number of dimensions. Linear discriminant analysis is a dimensionality

reduction technique in machine learning that is used to separate two or more groups of data. It is a supervised learning

algorithm that accepts labeled input data and tries to identify the optimal linear combination of features that separates the

classes as much as feasible. The principal purpose of linear discriminant analysis is to take high-dimensional data and

project it into a lower-dimensional space while retaining as much discriminative information between the classes as intact

as feasible [27]. This is a valuable thing to perform when you want to minimize the complexity of your data and when

you want your machine learning algorithms to work better, particularly in circumstances when you’ve got significantly

more features than samples. What linear discriminant analysis does is identify a linear combination of the characteristics

that optimally separates the classes; it measures how well the classes are separated when the data are projected onto the

space defined by the linear combo. In general, linear discriminant analysis can be a valuable approach for reducing data

dimensionality. In machine learning tasks, where class separation is a key issue. It can be used as a pre-processing step

before running other machine learning algorithms or as a stand-alone approach for classification jobs.

3.5 DATA SEGMENTATION INTO TRAINING AND TESTING SETS

When the model is trained on the labeled set, its performance is tested on unseen data. We separate a set into a

training set and a test set, and use the training set to train the model and the test set to evaluate its performance. This helps

to generalize the model estimation to fresh data. In this thesis, the training and testing data are located separately in the

dataset.

3.6 DATA CLASSIFICATION USING FEATURES EXTRACTED FROM DEEP LSTM NETWORK

Now that the important and effective features have been extracted by the pre-trained AlexNet and we have used

transfer learning technique, it is time to classify these features into a classification model in order to recognize the

malware and assign it to 25 classes. In this study, we use a type of recurrent neural network called Long Short-Term

Memory Network [28]. This network is designed to solve the vanishing gradient problem in traditional recurrent neural

networks. In traditional RNNs, this problem occurs when the gradient signal decays significantly and is propagated

repeatedly. Long Short-Term Memory Network layers are able to learn long-term dependencies in sequential data using

a combination of memory cells and gating mechanisms. Below, the main components of Long Short-Term Memory

Network layers will be discussed. Typically, the Long Short-Term Memory Network architecture in deep learning has

multiple layers. Each layer does a specific job in handling the input data and, importantly, in managing the dependencies

over time.

So, first off, the LSTM network has what's called an input layer. This layer is the starting point for any data that is

fed into the network. The input layer takes sequential data—like the price of oil over time, for instance—and pushes it

forward into the network.

The principal element of the network is the long-term and short-term memory (LSTM) layer. This layer is made up

of a set of short-term memory network units that, first, model long-term relationships among inputs, and second, record

the temporal patterns that make up the input sequence. They accomplish this using a kind of internal memory, where each

memory cell can hold a piece of information and where the network as a whole can update its remembered information

across the sequence. Between the input layer and the output layer, there can be one or more hidden layers of short-term

memory units.

The layers that are not visible carry out secret calculations and use secret activations. Using secret activations, the

hidden layers perform intermediate transformations on the input and “learn” complex, high-level features of the sequence.

The output layer of a short-term memory network is what gives the final answer. It can give either one answer or several

answers, depending on the network's task—say, for instance, oil price forecasting.

In regression tasks, an individual output unit could represent the predicted price of oil, whereas our classification

tasks might utilize multiple output units, each with an appropriate activation function, to represent the various classes or

categories that we wish to identify. Functions are applied to the outputs of each layer to introduce nonlinearity into our

model and allow it to learn the complex relationships in our data. We would usually perform this step in a long-term

dependency network. Functions we performed in these networks were typically kept simple; for instance, we often used

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 20

the sigmoid function, which is a "squashing" function that keeps values in a manageable range and, along with the "tanh"

(hyperbolic tangent) function, is one of the most common activation functions in feedforward neural networks.

To prevent deep learning models from overfitting, the regularization technique known as "dropout" is employed.

During training, a certain percentage of the connections between units is randomly and temporarily removed. This reduces

the network's dependence on specific units and improves the overall generalization ability of the model. We can interpret

dropout as training a large "committee" of subnetworks, which is equivalent to training a single model with a highly

nonlinear, irregularizable function. Dropout layers can be placed between either short-term memory networks or hidden

layers to regularize the network.

4. EVALUATION OF THE PROPOSED METHOD

This section reviews the findings of the research reported in the study. The research's primary aim was to categorize

malware based on pictures. To achieve this goal, a hybrid method was employed. This hybrid method comprised using a

deep AlexNet neural network to extract features from the images and then making the final classification using an LSTM

network. The second part of the study presented the input datasets. For the malware classification task, the input dataset

contained pictures that had been collected of 25 different kinds of malware. The dataset contained different instances of

each type of malware and served as the input for the model.

In the third section, we will lay out the evaluation criteria employed in this project. These criteria allow us to assess

the (malware classification model's) performance quality and to reach defensible judgments about the model's accuracy

and overall performance. In the fourth section, we will present the simulation results. We will report the model's accuracy

and the model's correct detection rate, along with several pertinent performance-related metrics. By studying this section,

you will understand how well the model works generally, and you will also appreciate the model's ability to work well

under several different (but equally valuable) conditions.

The final section will juxtapose the strategy advanced in this research with other strategies employed to sort malware.

The basis of this juxtaposition is the performance and accuracy of the model in pinpointing and sorting not-a-virus files,

thus allowing us to check the operational efficiency and applicability of the method proposed in this paper.

4.1 DATASET DESCRIPTION

In this work, we utilized the Malimg dataset. This dataset serves as a well-known benchmark in the malware analysis

and computer security realm. Specifically tailored for image-based malware detection and classification, the dataset offers

a selection of grayscale images. Each image is a screenshot of a host's screen, taken just prior to the malware being

detected and removed.

The Malimg dataset has some key characteristics that are beneficial for a few different types of experiments. First,

it is large enough—almost 10,000 images—to provide a good sample of the different types of malware in the dataset.

Second, it covers 25 malware families, each one well-represented across the image set. Third, the images are all in

grayscale, which produces a nice consistency to allow direct comparisons across the images. Finally, these images are in

the public domain and can be accessed for free, making the dataset reproducible across different labs for a different set

of experiments [29].

Format and Content: All images in the Malimg dataset are in the PNG format. The PNG format is a commonly used

format for lossless image storage. In terms of image content, each image in the dataset is a screenshot of a malware-

infected host’s screen. This means that each image in the dataset shows the visual appearance of the malware while it is

running on the victim’s device. The valuable visual information captured by the images can serve as a basis for conducting

image-based malware analysis.

Size of the Images: The Malimg dataset contains images with a fixed size of 256 x 256 pixels. This standard size

guarantees uniformity and makes for easy image preprocessing and analysis. The availability of the Malimg dataset has

made it possible to use image-based methods for malware detection and classification in cyber security research. Image-

based methods are now being introduced by a number of research groups as a potentially useful approach for testing and

assessing the performance of algorithms that are developed to detect and classify malware. The diversity of the datasets

used across malware families ensures a comprehensive assessment of the robustness and generalization of their proposed

models.

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 21

Table 1. - An example of a table

Seq. Type of malware Class

1 Worm Allaple.L

2 Worm Allaple.A

3 Worm Yuner.A

4 PWS Lolyda.AA1

5 PWS Lolyda.AA2

6 PWS Lolyda.AA3

7 Trojan C2Lop.P

8 Trojan C2Lop.gen!G

9 Dialer Instantaccess

10
Trojan

Downloader
Swizzor.gen!I

11
Trojan

Downloader
Swizzor.gen!E

12 Worm VB.AT

13 Rogue Fakcrean

14 Trojan Alucron.gen!J

15 Trojan Malex.gen!J

16 PWS Lolyda.AT

17 Dialer Adialer.C

18
Trojan

Downloader
Wintrim.BX

19 Dialer Dialplatform.B

20
Trojan

Downloader
Dontovo.A

21
Trojan

Downloader
Obfuscator.AD

22 Backdoor Agent.FYI

23 Worm: AutoIT Autorun.K

24 Backdoor Rbot!gen

25 Trojan Skintrim.N

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 22

FIGURE 2. - Some of the malware in the Malimg dataset

4.2 EVALUATION CRITERIA

Determining certain key metrics is a familiar and necessary part of ensuring that classification systems work

correctly. In the area of malware detection, these "evaluation criteria" help us understand how good (or bad) different

detection methods are. They tell us something about the effectiveness of detectors and the efficiency of different detection

techniques (and "algorithms," in the case of computer science). Using evaluation criteria, we can figure out who (or what)

performed best overall, who (or what) is most reliable, and who (or what) is most efficient. In this thesis, we use four key

metrics: precision, recall, accuracy, and F1 score.

Correctness: This factor usually measures how well the system does its job and figures the percentage of samples

that are accurately categorized (are true positives and negatives) out of the total number of samples. While correctness is

a reasonable way to judge system performance, it can sometimes give a false impression of how well a system actually

works, especially when used with imbalanced datasets. In datasets where there are a lot more of the valid files than there

are malware samples (or the other way around), when the system fails to detect most (or all) of the instances of the other

class, it can still achieve and show a high percentage of correctness.

When it comes to determining just how accurate the predictions are, positive ones that a malware detection system

makes, there is a criterion we look at called precision. It is a metric that I compute based on how many true positives

there are and how many true positives and false positives there are altogether. To put it another way, precision tells me

how many of the samples that a system identified as positive are actually malware. When it comes to the system that we

built, it has a precision of 97.3 percent. So, of the samples that we identified as malware, 97.3 percent were actually

malware and not benign files.

Recall, also known as sensitivity or the true positive rate, indicates how successfully the system recognizes all the

positive samples in a dataset. The recall ratio displays how many of the found samples are accurate (true positives) versus

how many are not (false negatives). In the context of malware detection, recall analyzes whether a system can identify as

malicious all the actual malware samples in the world. A high recall for a malware detection product suggests that most

malware samples are discovered and that the device has a low false negative rate.

F1-score: The F1-score is a composite metric that combines precision and recall. Unlike recall, accuracy gives the

erroneous positive a lot of weight, whereas the recall gives the false negative a lot of weight. Both of these faults are

significant when evaluating a system, especially an unbalanced dataset, because they reflect two alternative ways the

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 23

system can fail. The F1-score gives the same weight to the system's performance on both precision and recall, hence the

F1-score evaluates the system with precision and recall.

4.3 ANALYSIS OF THE RESULTS

In this section, we will examine the step-by-step modeling results of the proposed method. Therefore, in the first

step, we extract suitable features for classification using AlexNet deep network. The AlexNet network is a very powerful

architecture of a combination of convolutional layers and other layers required in the structure of a deep network, which

is used in this study to extract quality features without the need for additional knowledge for feature extraction. is In this

regard, the first step is to prepare the images so that they match the input layer of the network. In fact, the input layer of

the AlexNet network receives images with a length and width of 227x227 and with 3 color bands of red, green and blue.

On the other hand, the images in the malimg dataset have different sizes. Among these, some images that have dimensions

smaller than the input layer of AlexNet are brought to the desired dimensions using interpolation and scaling. In addition,

most of the images have larger dimensions, which we convert to the required dimensions by calculating the average of

the pixels around each corresponding pixel in the image with a higher resolution and using an anti-aliasing filter. Also,

as seen in Figure 2, the input images of the AlexNet network are black and white, but the AlexNet network receives

images with 3 color bands as input. Therefore, by repeating each image from the data set in all 3 bands, we form a color

image in such a way that all bands have the same value in each pixel. Finally, in order to use the AlexNet network for

feature extraction, first the last two layers of this network, namely the Fully Connected and Softmax layers, which are

related to the classification of Cifar dataset classes, are removed and then the resulting network is It is set correctly. The

output of this network, which is extracted from its last convolutional layer, will be the extracted features. Figure 3 shows

these features for 6 different classes in the dataset.

FIGURE 3. - Bar chart of extracted features for six samples from 6 different classes.

As seen in Figure 3, the AlexNet network extracts 1000 features for each sample. On the other hand, according to

this form, some of these features may not have much effect on data resolution, and reducing these features can help

improve accuracy and reduce complexity. In this regard, we will use the method of linear discriminant analysis. The first

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 24

step in the linear discriminant analysis method is to calculate the inter-class and intra-class dispersion matrices. Then,

with the help of these two matrices, we calculate the eigenvalues and by multiplying the resulting matrix by the matrix

of features, we form a new set with 1000 other features. This new feature set will concentrate information suitable for

differentiation in a few special features and scatter additional information in other features. Therefore, in the first step,

we will sort the data set in the order of the resulting eigenvalues, and then in order to reduce the features by 88%, we will

keep the first 120 features and remove the other features. The reason for choosing 88% for this purpose is the relative

complexity of the problem and further reduction of features can lead to the removal of required information and decrease

in accuracy. Figure 4 shows the new features selected for the same 6 samples in Figure 3. As can be seen, the separation

of classes has been significantly improved by using these features. As an example, the first feature for each class is within

a certain range, and with the help of this feature alone, many classes can be distinguished. In addition to this feature, 120

other features have also been extracted, each of which contributes to this separation in some way, and it can be concluded

that in addition to reducing the dimensions of the input and helping to reduce the complexity, the separation We also

increased the acceptability of the data and we can expect a suitable performance for the final classification using LSTM.

FIGURE 4. - Bar chart of extracted features for six samples from 6 different classes.

Finally, after the complete processing of the data set, we train an LSTM network to classify different classes. In this

context, it is vital to set some main parameters for LSTM. The first parameter is the learning rate, which was considered

a low value of 0.0001 for increasing accuracy and not crossing the global optimum. On the other hand, this small value

causes a slow change of weight and bias parameters during the training process. Therefore, by increasing the number of

repetitions to 1000, it is possible to ensure that the optimal point is reached. On the other hand, choosing these parameters

makes the training time extremely long. In order to solve this problem and according to the size of the input data set, we

set the batch size to 256. Another important parameter is the number of hidden units, which according to the complexity

of the problem and the size of the input data set, we set a value of 120 for this parameter, which of course increases the

adjustable parameters and reduces the speed of convergence, and to solve this problem, the algorithm We use rmsprop

optimization for network training. rmsprop algorithm with very fast and accurate convergence can help to improve these

issues and achieve a successful training. In the following, we will examine the trained network in order to fully examine

the proposed method.

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 25

4.3.1 EXAMINING THE TEST RESULTS AND TRAINING SET BASED ON THE CONFUSION

MATRIX

Another technique to check the performance of the system is to utilize a confusion matrix. This matrix gives a precise

split of the expected and actual class scores, allowing for a comprehensive evaluation of the malware detection system.

The confusion matrix for malware detection consists of four basic elements:

True Positive (TP): Shows the number of malware samples that were accurately recognized as malware by the

detection system.

True Negatives (TN): This element shows the number of genuine file samples that were accurately categorized as

harmless by the detection system. In other words, it illustrates the circumstances in which the system accurately selected

safe files.

False Positives (FP): This element shows the number of genuine file samples that were wrongly flagged as malware

by the detection system.

False Negatives (FN): This aspect shows the number of malware samples that were disregarded by the detection

system or detected as genuine files. These scenarios arise when the system does not recognize the presence of malware.

By grouping these elements in a table, the confusion matrix provides a clear visual depiction of the categorization

performance. Also, using the entries in this matrix, the evaluation criteria described in Section 4-2 can be determined as

follows.

Accuracy =
TPy+TNy

TPy+TNy+FPy+FNy
 (1)

Precision =
1

nc
∑ (

TPy

TPy+FPy
)y (2)

Recall =
1

nc
∑ (

TPy

TPy+FNy
)y (3)

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×(Precision×Recall)

Precision+Recall
 (4)

The confusion matrix of the proposed method for the training and test data sets are shown in Figures 5 and 6.

FIGURE 5. - Education clutter matrix

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 26

FIGURE 6. - Test clutter matrix

As can be seen, the number of false detection samples on the training dataset is 26 out of 13250 samples, which

shows the excellent performance of the proposed method. In addition, on the testing dataset, only 9 out of 1750 samples

have signs of false diagnosis. As a result, the method we proposed has yielded strong performance metrics.

4.3.2 EXAMINING THE RESULTS OF THE TEST AND TRAINING SET BASED ON THE

PERFORMANCE CHARACTERISTIC CURVE

The performance of a classification model, particularly in malware prediction, can be assessed using a graphical

representation known as the operating characteristic curve (ROC). The ROC curve provides a means of appraising the

balance between the true positive rate (sensitivity) and the false positive rate across various classification thresholds.

From our analyses of these curves, we are able to determine the best cutoff values with which to classify our test samples

as "malware" or "nonmalware." Furthermore, the ROC curve gives us insight into the overall accuracy of our model—it

tells us how well our model is able to predict which samples are malware and which are not.

To draw a ROC curve for malware prediction, follow these steps:

1. Get the model predictions: Train the classification model on a dataset that has features and corresponding

labels (indicating which samples are malware and which are not). Then use the model to generate either

probability scores or predicted labels for each sample in the dataset.

2. Calculate the TPR and FPR: For the model predictions, calculate the true positive rate (TPR) and false

positive rate (FPR) at various classification thresholds. The TPR is the proportion of true malware samples

that the model identifies as malware. The FPR is the proportion of benign samples that the model

erroneously classifies as malware.It is worth noting that the ROC curve is plotted for each class in the

model.

Connecting different points to each other: Connecting each point in the ROC plot to form a curve by repeating the

ranked predictions. This curve shows the trade-off between TPR and FPR for different thresholds. The closer the plotted

curves are to the upper and left corner of the graph, the better the model performs in recognition and classification. In

this study, as can be seen in Figures 7 and 8, the plotted curves are 45 degrees higher than the baseline, demonstrating

the optimal performance of the model in detecting malware on both the training and test datasets.

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 27

FIGURE 7. - Performance characteristic curve of training data

FIGURE 8. - Performance characteristic curve of test data

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 28

4.3.3 EXAMINATION OF THE RESULTS OF THE TESTS AND TRAINING SERIES BASED ON THE

APPROVED EVALUATION CRITERIA

In the last step, we will examine the proposed method using the criteria introduced in Section 2-4 and plot the results

of the training and test data in the form of bar graphs in Figures 9 and 10. As can be seen from Figure 9, all the criteria

in the training dataset have reached 99.8%, and in addition, according to Figure 10, the same values in the test dataset are

about 99.5%. The results show not only the very good performance of the proposed method by achieving high accuracy,

but also the lack of overfitting of the proposed method, because all the criteria in the test dataset have almost the same

performance as the training dataset.

FIGURE 9. - Final review of training data

FIGURE 10. - Final review of test data

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 29

4.4 COMPARISON OF THE PROPOSED METHOD WITH PREVIOUS STUDIES

In today's linked digital world, the threat of malicious software, known as malware, poses major risks to individuals,

organizations, and even the economy of society. Malware is any software designed to destroy, disrupt, damage, or gain

unauthorized access to computer systems, networks, or data. The rapid evolution of malware, coupled with its

increasingly sophisticated nature, requires robust measures to identify these threats and mitigate their effects effectively.

Therefore, it is very important to review and study the research that has been done in this direction as well as to try to

develop existing approaches.

Table 2 highlights the methodologies, objectives, and performance differences between the studies while focusing

on their distinct contributions to cybersecurity.

Table 2. - Comparison of the proposed method with other two studies

Study 1 [30] Study 2 [31] Proposed Method

Android Malware Detection

Network Intrusion Detection

(ID)

Malware Classification Using Image

Data

Detect Android malware using

RNN based on static features

Classify and predict malicious

network threats using CRNN

Classify malware types using AlexNet

and LSTM combination

Combines four static features

(permissions, API calls, etc.) and

uses RNN

Hybrid CNN-RNN (CRNN)

architecture for ID system

Uses AlexNet for feature extraction,

LDA for dimensionality reduction,

followed by LSTM for classification

2,820 Android applications

(malware and benign samples) CSE-CIC-IDS2018 (ID dataset) MaliMG dataset (malware images)

Flexible publishing policy and lack

of restrictions in Google Play make

Android more vulnerable

Combines convolutional

features (CNN) with temporal

features (RNN) for ID detection

Image preprocessing, feature extraction

with CNN, and classification with

LSTM

98.58% detection accuracy

97.75% accuracy on ID

detection

99.80% training accuracy, 99.49%

testing accuracy

Novel RNN architecture

outperforming traditional ML

algorithms

CRNN hybrid model integrating

CNN and RNN for superior ID

system

Integration of deep image feature

extraction with time-series classification

via LSTM

High accuracy in Android malware

detection

Effective handling of network

intrusion attacks with temporal

patterns

High classification accuracy and strong

generalizability in detecting diverse

malware types

Limited to Android malware

Limited to network intrusion

detection

Specific to image-based malware

classification

5. CONCLUSION

Malware, malicious software designed to disrupt, damage, or gain unauthorized access to computer systems, poses

a substantial threat to individuals, businesses, and the entire cybersecurity landscape. The ability to effectively categorize

and identify different types of malware is vital to building effective defensive systems and limiting potential hazards. In

this article, we describe a unique technique for classifying malware from photos using a mix of AlexNet convolutional

neural network and LSTM network.

The first stage in our technique is data preprocessing. We verify that our photos are of suitable and consistent size,

so as to work correctly with the desired network architecture. We then employ AlexNet—an image classification network

originally built for categorizing ordinary objects—to work on our photographs of malware. Rather of classifying the

photos straight, we utilize AlexNet to extract the top 1000 features. From there, we apply linear discriminant analysis to

narrow down to 120 features, which are perhaps more useful for classification than the 1000 features generated by

AlexNet. Finally, we employ a long short-term memory (LSTM) network to accomplish the actual classification of the

photos.

We carried done experiments using the MaliMG dataset, which comprises a combination of malware samples, to

judge the performance of our suggested technique. The findings obtained were satisfactory and proved the efficiency of

the proposed strategy. Our training accuracy was an astonishing 99.80%, demonstrating that our model is able to

distinguish the patterns and features of malware images with great fidelity. Our test dataset accuracy was also quite strong

at 99.49%, validating the argument that our method is powerful and generalizes well.

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 30

The benefits of the suggested strategy are shown in numerous segments. To begin, we used AlexNet. We employed

its remarkable feature extraction capabilities, which helped us capture nearly all the relevant representations of the

malware photos and, thus, resulted in an accurate and reliable categorization of them. In reality, the representations we

retrieved from AlexNet were utilized to classify the photographs with the best accuracy in the contests that we participated

(1st place in 2016 and 2nd place in 2018).

Our investigation confirmed the capacity of deep learning approaches to classify malware from photos. Our method's

excellent accuracy rate implies that it efficiently detects many forms of malware. This research may lead to the creation

of better, more intelligent methods for identifying and categorizing malware. It might also aid in inventing new, robust

techniques of identifying malware that can overcome present systems and methods of avoiding detection. In any event,

since the threat of malware continues to grow, we must apply our cybersecurity approaches and plans with the maximum

effectively.

Funding

None

ACKNOWLEDGEMENT

None

CONFLICTS OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] X. Xiao and S. Yang, "An image-inspired and CNN-based Android malware detection approach," in 2019 34th

IEEE/ACM International Conference on Automated Software Engineering (ASE), 2019, pp. 1259-1261.

https://doi:10.1109/ASE.2019.00162.

[2] A. McDole, M. Abdelsalam, M. Gupta, and S. Mittal, "Analyzing CNN based behavioral malware detection

techniques on cloud IaaS," in International Conference on Cloud Computing, Cham: Springer, 2020, pp. 64-79.

https://doi:10.1007/978-3-030-51759-4_5.

[3] S. Yue, "Imbalanced malware images classification: a CNN based approach," arXiv preprint, arXiv:1708.08042,

2017. [Online]. Available: https://arxiv.org/abs/1708.08042.

[4] N. Idika and A. P. Mathur, "A survey of malware detection techniques," Purdue University, vol. 48, no. 2, pp. 32-46,

2007.

[5] Ö. A. Aslan and R. Samet, "A comprehensive review on malware detection approaches," IEEE Access, vol. 8, pp.

6249-6271, 2020. https://doi:10.1109/ACCESS.2020.2965085.

[6] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, "A survey on malware detection using data mining techniques," ACM

Computing Surveys (CSUR), vol. 50, no. 3, pp. 1-40, 2017. https://doi:10.1145/3073559.

[7] S. Alsudani and M. N. Saeea: "Enhancing Thyroid Disease Diagnosis through Emperor Penguin Optimization

Algorithm," Wasit Journal for Pure Sciences, vol. 2, no. 4, Dec. 2023. https://doi.org/10.31185/wjps.230.

[8] R. R. Ravula, "Classification of malware using reverse engineering and data mining techniques," Ph.D. dissertation,

Univ. of Akron, Akron, OH, USA, 2011. [Online]. Available:

https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=akron1302038004&disposition=inline.

[9] S. W. A. Alsudani and A. Ghazikhani: "Enhancing Intrusion Detection with LSTM Recurrent Neural Network

Optimized by Emperor Penguin Algorithm," World Journal of Computer Application and Software Engineering,

vol. 2, no. 3, 2023. https://doi.org/10.31185/wjcms.166.

[10] Ö. A. Aslan and R. Samet, "A comprehensive review on malware detection approaches," IEEE Access, vol. 8, pp.

6249-6271, 2020. https://doi:10.1109/ACCESS.2020.2965085.

[11] Q. D. Ngo, H. T. Nguyen, V. H. Le, and D. H. Nguyen, "A survey of IoT malware and detection methods based on

static features," ICT Express, vol. 6, no. 4, pp. 280-286, 2020. [Online]. Available:

https://doi.org/10.1016/j.icte.2020.04.005.

[12] Luo, W., et al. "Detection of Malware by Deep Learning as CNN-LSTM Machine Learning Techniques in Real

Time." MDPI, 2023.

[13] S. Alsudani, H. Nasrawi, M. Shattawi, and A. Ghazikhani: "Enhancing Spam Detection: A Crow-Optimized FFNN

with LSTM for Email Security," Wasit Journal of Computer and Mathematics Science, vol. 3, no. 1, pp. 1-15, Mar.

2024. https://doi.org/10.31185/wjcms.199.

[14] J. Sawicki, M. Ganzha, and M. Paprzycki, "The State of the Art of Natural Language Processing—A Systematic

Automated Review of NLP Literature Using NLP Techniques," Data Intelligence, vol. 5, no. 3, pp. 707–749, 2023.

[Online]. Available: https://doi.org/10.1162/dint_a_00213.

[15] Chen, Y., et al. "A Comprehensive Survey on Deep Learning Based Malware Detection." ScienceDirect, 2023.

https://doi:10.1109/ASE.2019.00162
https://doi:10.1007/978-3-030-51759-4_5
https://arxiv.org/abs/1708.08042
https://doi:10.1109/ACCESS.2020.2965085
https://doi:10.1145/3073559
https://doi.org/10.31185/wjps.230
https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=akron1302038004&disposition=inline
https://doi.org/10.31185/wjcms.166
https://doi:10.1109/ACCESS.2020.2965085
https://doi.org/10.1016/j.icte.2020.04.005
https://doi.org/10.31185/wjcms.199
https://doi.org/10.1162/dint_a_00213

Balsam Ridha Habeeb Alsaedi., Wasit Journal of Computer and Mathematics Science Vol. 3 No. 4 (2024) p. 15-31

 31

[16] W. Lu, J. Li, Y. Li, A. Sun, and J. Wang, "A CNN-LSTM-Based Model to Forecast Stock Prices," Computational

Intelligence and Neuroscience, vol. 2020, pp. 1-11, Nov. 2020. https://doi.org/10.1155/2020/6622927.

[17] P. Kumar and K. Bgane, "Hybrid Deep Learning Approach Based on LSTM and CNN for Malware Detection,"

Springer, 2023. DOI: https://doi.org/10.1007/978-981-19-6004-3_14.

[18] A. Mehrban and P. Ahadian, "Malware Detection in IoT Systems Using Machine Learning Techniques,"

International Journal of Wireless & Mobile Networks, 2023. DOI: https://doi.org/10.5121/ijwmn.2023.15403.

[19] Y. Zhang et al., "DeepMal: A CNN-LSTM Model for Malware Detection Based on Dynamic Semantic Behaviors,"

IEEE Xplore, 2023. DOI: https://doi.org/10.1109/ACCESS.2023.3242167.

[20] Y. Chen et al., "A Comprehensive Survey on Deep Learning Based Malware Detection," ScienceDirect, 2023. DOI:

https://doi.org/10.1016/j.cose.2023.103031.

[21] M. Hasan Matin, A. Khatun, M. G. Moazzam, and M. S. Uddin, "An Efficient Disease Detection Technique of Rice

Leaf Using AlexNet," J. Comput. Commun., vol. 8, no. 12, pp. 22-28, Dec. 2020. [Online]. Available:

https://doi.org/10.4236/jcc.2020.812005.

[22] A. Ullah, H. Elahi, Z. Sun, A. Khatoon, and I. Ahmad, "Comparative Analysis of AlexNet, ResNet18 and

SqueezeNet with Diverse Modification and Arduous Implementation," Arabian Journal for Science and

Engineering, vol. 47, pp. 2397–2417, Oct. 2022. https://doi.org/10.1007/s13369-021-05813-5.

[23] S. Lu, Z. Lu, and Y.-D. Zhang, "Pathological brain detection based on AlexNet and transfer learning," Journal of

Computational Science, vol. 30, pp. 41-47, Jan. 2019. [Online]. Available:

https://doi.org/10.1016/j.jocs.2018.11.008.

[24] H.-C. Chen, A. M. Widodo, and A. Wisnujati, "AlexNet Convolutional Neural Network for Disease Detection and

Classification of Tomato Leaf," Electronics, vol. 11, no. 6, pp. 951, Jun. 2022. [Online]. Available:

https://doi.org/10.3390/electronics11060951.

[25] L. Zhu, Z. B. Li, C. Li, J. Wu, and J. Yue, "High performance vegetable classification from images based on AlexNet

deep learning model," Int. J. Agric. Biol. Eng., vol. 11, no. 4, pp. 217-223, 2018. [Online]. Available:

https://doi.org/10.25165/ijabe.v11n4.3050.

[26] S.-H. Wang, S. Xie, X. Chen, D. S. Guttery, C. Tang, J. Sun, and Y.-D. Zhang, "Alcoholism Identification Based on

an AlexNet Transfer Learning Model," Frontiers in Psychiatry, vol. 10, 2019. [Online]. Available:

https://doi.org/10.3389/fpsyt.2019.00205.

[27] F. Anowar, S. Sadaoui, and B. Selim, "Conceptual and Empirical Comparison of Dimensionality Reduction

Algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)," Computer Science Review, vol.

40, May 2021, Article 100378. [Online]. Available: https://doi.org/10.1016/j.cosrev.2021.100378.

[28] H. Naeem and A. A. Bin-Salem, "A CNN-LSTM network with multi-level feature extraction-based approach for

automated detection of coronavirus from CT scan and X-ray images," Applied Soft Computing, vol. 113, Part A,

pp. 107918, Dec. 2021. [Online]. Available: https://doi.org/10.1016/j.asoc.2021.107918.

[29] P. Panda, O. K. C. U, S. Marappan, S. Ma, M. S, and D. V. Nandi, "Transfer Learning for Image-Based Malware

Detection for IoT," Sensors, vol. 23, no. 6, p. 3253, 2023. [Online]. Available: https://doi.org/10.3390/s23063253.

[30] M. Almahmoud, D. Alzu’bi, and Q. Yaseen, "ReDroidDet: Android Malware Detection Based on Recurrent Neural

Network," Procedia Computer Science, vol. 184, pp. 841-846, 2021. https://doi.org/10.1016/j.procs.2021.03.105.

[31] M. A. Khan, "HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network Intrusion Detection

System," Processes, vol. 9, no. 5, p. 834, May 2021. [Online]. Available: https://doi.org/10.3390/pr9050834.

https://doi.org/10.1155/2020/6622927
https://doi.org/10.1007/978-981-19-6004-3_14
https://doi.org/10.5121/ijwmn.2023.15403
https://doi.org/10.1109/ACCESS.2023.3242167
https://doi.org/10.1016/j.cose.2023.103031
https://doi.org/10.4236/jcc.2020.812005
https://doi.org/10.1007/s13369-021-05813-5
https://doi.org/10.1016/j.jocs.2018.11.008
https://doi.org/10.3390/electronics11060951
https://doi.org/10.25165/ijabe.v11n4.3050
https://doi.org/10.3389/fpsyt.2019.00205
https://doi.org/10.1016/j.cosrev.2021.100378
https://doi.org/10.1016/j.asoc.2021.107918
https://doi.org/10.3390/s23063253
https://doi.org/10.1016/j.procs.2021.03.105
https://doi.org/10.3390/pr9050834

